
Formalizing Turing Machines

Andrea Asperti, Wilmer Ricciotti

Department of Computer Science, University of Bologna
asperti@cs.unibo.it, ricciott@cs.unibo.it

Abstract. We discuss the formalization, in the Matita Theorem Prover,
of a few, basic results on Turing Machines, up to the existence of a
(certified) Universal Machine. The work is meant to be a preliminary
step towards the creation of a formal repository in Complexity Theory,
and is a small piece in our Reverse Complexity program, aiming to a
comfortable, machine independent axiomatization of the field.

1 Introduction

We have assisted, in recent years, to remarkable achievements obtained by means
of interactive theorem provers for the formalization and automatic checking of
complex results in many different domains, spanning from pure mathematics [9,
14, 5] to software verification [19, 18, 25, 1], passing through the metatheory and
semantics of programming languages [10, 24].

Surprisingly, however, very little work has been done so far in major fields
of theoretical computer science, such as computability theory and, especially,
complexity theory. The only work we are aware of is [20], containing basic re-
sults in computability theory relying on λ-calculus and recursive functions as
computational models. The computational constructs of both these models are
not finitistic and are not very suitable for complexity purposes: Turing Machines
still provide the standard foundation for this discipline.

Our work is an initial, preliminary contribution in this direction. In par-
ticular, we present a formalization of basic definitions and results on Turing
Machines, up to the existence of a universal machine and the proof of its cor-
rectness. In particular, in Section 2 we discuss the notion of Turing Machine
and its semantics; Section 3 provides means for composing machines (sequential
composition, conditionals and iteration); Section 4 contains the definition of ba-
sic, atomic machines for textual manipulation of the tape; Section 5 introduces
the notion of Normal Turing Machine and its standard representation as a list
of tuples; Section 6 gives an outline of the universal machine; Section 7 and
8 are respectively devoted to the two main routines of the universal machine,
namely finding the right tuple to apply, and executing the corresponding action;
in Section 10, we summarize the main results which have been proved about the
universal machine. In the conclusion we provide overall information about the
size of the contribution and the resources required for its development as well
as more motivations for pursuing formalization in computability and complexity
theory: in particular we shall briefly outline our long term Reverse Complexity

program, aiming to a trusted, comfortable, machine independent axiomatization
of the field suitable for mechanization.

In our development, we have been inspired by several traditional articles and
textbooks, comprising e.g. [13, 17, 11, 23, 21]; however, it is worth to remark that
none of them provides a description of the topic, and especially of universal ma-
chines, sufficiently accurate to be directly used as a guideline for formalization.

The formalization work described in this paper has been performed by means
of the Matita Interactive Theorem Prover [8]. For lack of space we cannot provide
details about proofs; the development will be part of the standard library of
Matita since the next public release, and in the next few months will be made
accessible on-line through the new Web interface of the system [6].

2 The notion of Turing Machine

Turing Machines were defined by Alan M. Turing in [22]. To Computer Scientists,
they are a very familiar notion, so we shall address straight away their formal
definition. Let us just say that, for the purposes of this paper, we shall stick to
deterministic, single tape Turing Machines. The generalization to multi-tape/non
deterministic machines does not look problematic.1

2.1 The tape

The first problem is the definition of the tape. The natural idea is to formalize it
as a zipper, that is a pair of lists l and r, respectively representing the portions
of the tape at the left and the right of the tape head; by convention, we may
assume the head is reading the first symbol on the right. Of course, the machine
must be aware this list can be empty, that means that the transition function
should accept an optional tape symbol as input. Unfortunately, in this way, the
machine is only able to properly react to a right overflow; the problem arises
when the left tape is empty and the head is moved to the left: a new “blank”
symbol should be added to the right tape. A common solution in textbooks is
to reserve a special blank character t of the tape alphabet for this purpose:
the annoying consequence is that tape equality should be defined only up to a
suitable equivalence relation ignoring blanks. To make an example, suppose we
move the head to the left and then back to the right: we expect the tape to end
up in the same situation we started with. However, if the tape was in the con-
figuration ([], r) we would end up in ([t], r). As anybody with some experience
in interactive proving knows very well, reasoning up to equivalence relations is

1 It is worth to recall that the choice about the number of tapes, while irrelevant
for computability issues, it is not from the point of view of complexity. Hartmanis
and Stearns [15] have shown that any k-tape machine can be simulated by a one-
tape machine with at most a quadratic slow-down, and Hennie [16] proved that in
some cases this is the best we can expect; Hennie and Stearns provided an efficient
simulation of multi-tape machines on a two-tape machine with just a logarithmic
slow-down [12].

extremely annoying, that prompts us to look for a different representation of the
tape.

The main source of our problem was the asymmetric management of the left
and right tape, with the arbitrary assumption that the head symbol was part of
the right tape. If we try to have a more symmetric representation we must clearly
separate the head symbol from the left and right tape, leading to a configuration
of the kind (l, c, r) (mid-tape); if we have no c, this may happen for three different
reasons: we are on the left end of a non-empty tape (left overflow), we are on the
right end of a non-empty tape (right overflow), or the tape is completely empty.

This definition of the tape may seem conspicuous at first glance, but it re-
sulted to be quite convenient.� �
inductive tape (sig:FinSet) : Type :=
| niltape : tape sig
| leftof : sig → list sig → tape sig
| rightof : sig → list sig → tape sig
| midtape : list sig → sig → list sig → tape sig.� �

For instance, suppose to be in a configuration with an empty left tape, that
is (midtape [] a l); moving to the left will result in (leftof a l); further moves
to the left are forbidden (unless we write a character to the uninitialized cell,
therefore turning the overflow into a mid-tape), and moving back to the right
restores the original situation.

Given a tape, we may easily define the left and right portions of the tape and
the optional current symbol (question marks and dots appearing in the code are
implicit parameters that the type checker is able to infer by itself):� �
definition left :=λsig.λt:tape sig .match t with
[niltape ⇒ [] | leftof ⇒ [] | rightof s l ⇒ s::l | midtape l ⇒ l].

definition right :=λsig.λt:tape sig .match t with
[niltape ⇒ [] | leftof s r ⇒ s::r | rightof ⇒ [] | midtape r ⇒ r].

definition current :=λsig.λt:tape sig .match t with
[midtape c ⇒ Some ? c | ⇒ None ?].� �

Note that if (current t) = None than either (left t) or (right t) is empty.

2.2 The Machine

We shall consider machines with three possible moves for the head: L (left) R
(right) and N (None).� �
inductive move : Type :=| L : move | R : move | N : move.� �

The machine, parametric over a tape alphabet sig, is a record composed of a
finite set of states, a transition function trans, a start state, and a set of halting
states identified by a boolean function. To encode the alphabet and the states,
we exploit the FinSet library of Matita, making extensive use of unification hints
[7].

� �
record TM (sig:FinSet): Type :=
{ states : FinSet;

trans : states × (option sig) → states × (option (sig × move));
start : states ;
halt : states →bool}.� �

The transition function takes in input a pair 〈q, a〉 where q is the current
internal state and a is the current symbol of the tape (hence, an optional char-
acter); it returns a pair 〈q, p〉 where p is an optional pair 〈b,m〉 composed of a
new character and a move. The rationale is that if we write a new character we
will always be allowed to move, also in case the current head symbol was None.
However, we also want to give the option of not touching the tape (NOP), that
is the intended meaning of returning None as output.

Executing p on the tape has the following effect:� �
definition tape move :=λsig.λt:tape sig.λp:option (sig × move).

match p with
[None ⇒ t
| Some p1 ⇒

let 〈s ,m〉 :=p1 in
match m with

[R ⇒ tape move right ? (left ? t) s (right ? t)
| L ⇒ tape move left ? (left ? t) s (right ? t)
| N ⇒ midtape ? (left ? t) s (right ? t)]].� �

where� �
definition tape move left :=λsig:FinSet.λlt : list sig .λc:sig .λrt: list sig .

match lt with
[nil ⇒ leftof sig c rt
| cons c0 lt0 ⇒ midtape sig lt0 c0 (c :: rt)].

definition tape move right :=λsig:FinSet.λlt: list sig .λc:sig .λrt: list sig .
match rt with
[nil ⇒ rightof sig c lt
| cons c0 rt0 ⇒ midtape sig (c::lt) c0 rt0].� �

A configuration relative to a given set of states and an alphabet sig is a
record composed of a current internal state cstate and a sig tape.� �
record config (sig , states :FinSet): Type :=
{ cstate : states ;

ctape: tape sig}.� �
A transition step between two configurations is defined as follows:� �

definition step :=λsig.λM:TM sig.λc:config sig (states sig M).
let current char :=current ? (ctape ?? c) in
let 〈news,mv〉 :=trans sig M 〈cstate ?? c,current char〉 in
mk config ?? news (tape move sig (ctape ?? c) mv).� �

2.3 Computations

A computation is an iteration of the step function until a final internal state
is met. In Matita, we may only define total functions, hence we provide an
upper bound to the number of iterations, and return an optional configuration
depending on the fact that the halting condition has been reached or not.� �
let rec loop (A:Type) n (f:A→A) p a on n :=

match n with
[O ⇒ None ?
| S m ⇒ if p a then (Some ? a) else loop A m f p (f a)].� �

The transformation between configurations induced by a Turing machine M
is hence:� �
definition loopM :=λsig,M,i,inc.

loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) inc .� �
The usual notion of computation for Turing Machines is defined according

to given input and output functions, providing the initial tape encoding and
the final read-back function. As we know from Kleene’s normal form, the output
function is particularly important: the point is that our notion of Turing Machine
is monotonically increasing w.r.t. tape consumption, with the consequence that
the transformation relation between configurations is decidable. However, input
and output functions are extremely annoying when composing machines and we
would like to get rid of them as far as possible.

Our solution is to define the semantics of a Turing Machine by means of a
relation between the input tape and the final tape (possibly embedding the input
and output functions): in particular, we say that a machine M realizes a relation
R between tapes (M |= R), if for all t1 and t2 there exists a computation leading
from 〈qo, t1〉, to 〈qf , t2〉 and t1 R t2, where q0 is the initial state and qf is some
halting state of M .� �
definition initc :=λsig.λM:TM sig.λt.

mk config sig (states sig M) (start sig M) t.

definition Realize :=λsig.λM:TM sig.λR:relation (tape sig).
∀t.∃i .∃outc.

loopM sig M i (initc sig M t) = Some ? outc ∧R t (ctape ?? outc).� �
It is natural to wonder why we use relations on tapes, and not on configura-

tions. The point is that different machines may easily share tapes, but they can
hardly share their internal states. Working with configurations would force us
to an input/output recoding between different machines that is precisely what
we meant to avoid.

Our notion of realizability implies termination. It is natural to define a weaker
notion (weak realizability, denoted M ||= R), asking that t1 R t2 provided there
is a computation between t1 and t2. It is easy to prove that termination together
with weak realizability imply realizability (we shall use the notation M ↓ t to
express the fact that M terminates on input tape t).

� �
definition WRealize :=λsig.λM:TM sig.λR:relation (tape sig).
∀t, i ,outc.

loopM sig M i (initc sig M t) = Some ? outc →R t (ctape ?? outc).

definition Terminate :=λsig.λM:TM sig.λt. ∃i,outc.
loopM sig M i (initc sig M t) = Some ? outc.

lemma WRealize to Realize : ∀sig.∀M: TM sig.∀R.
(∀t.M ↓ t) →M ||= R →M |= R.� �

2.4 A canonical relation

For every machine M we may define a canonical relation, that is the smallest
relation weakly realized by M� �
definition R TM :=λsig.λM:TM sig.λq.λt1,t2.
∃i ,outc. loopM ? M i (mk config ?? q t1) = Some ? outc ∧ t2 = ctape ?? outc.

lemma Wrealize R TM : ∀sig,M.
M ||= R TM sig M (start sig M).

lemma R TM to R: ∀sig,M,R. ∀t1,t2.
M ||= R →R TM ? M (start sig M) t1 t2 →R t1 t2.� �

2.5 The Nop Machine

As a first, simple example, we define a Turing machine performing no opera-
tion (we shall also use it in the sequel to force, by sequential composition, the
existence of a unique final state).

The machine has a single state that is both initial and final; the transition
function is irrelevant, since it will never be executed.

The semantic relation R nop characterizing the machine is just the identity
and the proof that the machine realizes it is entirely straightforward.

in this case, states are defined as initN 1, that is the interval of natural
numbers less than 1. This is actually a sigma type containing a natural number
m and an (irrelevant) proof that it is smaller than n.� �
definition nop states :=initN 1.
definition start nop : initN 1 :=mk Sig ?? 0 (le n . . . 1).

definition nop :=λalpha:FinSet.
mk TM alpha nop states
(λp.let 〈q,a〉 :=p in 〈q,None ?〉)
start nop (λ .true).� �

� �
definition R nop :=λalpha.λt1,t2:tape alpha.t2 = t1.

lemma sem nop : ∀alpha.nop alpha |= R nop alpha.� �
3 Composing Machines

Turing Machines are usually reputed to suffer for a lack of compositionality.
Our semantic approach, however, allows us to compose them in relatively easy
ways. This will give us the opportunity to reason at a higher level of abstraction,
rapidly forgetting their low level architecture.

3.1 Sequential composition

The sequential composition M1 ·M2 of two Turing Machines M1 and M2 is a
new machine having as states the disjoint union of the states of M1 and M2.
The initial state is the (injection of the) initial state of M1, and similarly the
halting condition is inherited from M2; the transition function is essentially the
disjoint sum of the transition functions of M1 and M2, plus a transition leading
from the final states of M1 to the (old) initial state of M2 (here it is useful to
have the possibility of not moving the tape).� �
definition seq trans :=λsig. λM1,M2 : TM sig.
λp. let 〈s ,a〉 :=p in

match s with
[inl s1 ⇒

if halt sig M1 s1 then 〈inr . . . (start sig M2), None ?〉
else let 〈news1,m〉 :=trans sig M1 〈s1,a〉 in 〈 inl . . .news1,m〉

| inr s2 ⇒
let 〈news2,m〉 :=trans sig M2 〈s2,a〉 in 〈inr . . .news2,m〉

].

definition seq :=λsig. λM1,M2 : TM sig.
mk TM sig

(FinSum (states sig M1) (states sig M2))
(seq trans sig M1 M2)
(inl . . . (start sig M1))
(λs.match s with [inl ⇒ false |inr s2 ⇒ halt sig M2 s2]).� �

If M1 |= R1 and M2 |= R2 then M1 ·M2 |= R1 ◦R2, that is a very elegant way to
express the semantics of sequential composition. The proof of this fact, however,
is not as straightforward as one could expect. The point is that M1 works with
its own internal states, and we should “lift” its computation to the states of the
sequential machine.

To have an idea of the kind of results we need, here is one of the the key
lemmas:

� �
lemma loop lift : ∀A,B,k, lift , f ,g,h, hlift ,c,c1.

(∀x. hlift (lift x) = h x) →
(∀x.h x = false → lift (f x) = g (lift x)) →
loop A k f h c = Some ? c1 →
loop B k g hlift (lift c) = Some ? (lift . . . c1).� �

It says that the result of iterating a function g starting from a lifted configuration
lift c is the same (up to lifting) as iterating a function f from c provided that

1. a base configuration is halting if and only if its lifted counterpart is halting
as well;

2. f and g commute w.r.t. lifting on every non-halting configuration.

3.2 If then else

The next machine we define is an if-then-else composition of three machines
M1,M2 and M3 respectively implementing a boolean test, and the two condi-
tional branches. One typical problem of working with single tape machines is the
storage of intermediate results: using the tape is particularly annoying, since it
requires moving the whole tape back and forward to avoid overwriting relevant
information. Since in the case of the if-then-else the result of the test is just a
boolean, it makes sense to store it in a state of the machine; in particular we
expect to end up in a distinguished final state qacc if the test is successful, and
in a different state otherwise. This special state qacc must be explicitly men-
tioned when composing the machines. The definition of the if-then-else machine
is then straightforward: the states of the new machine are the disjoint union of
the states of the three composing machines; the initial state is the initial state of
M1; the final states are the final states of M2 and M3; the transition function is
the union of the transition functions of the composing machines, where we add
new transitions leading from qacc to the initial state of M2 and from all other
final states of M1 to the initial state of M2.� �
definition if trans :=λsig. λM1,M2,M3:TM sig. λq:states sig M1.λp.
let 〈s ,a〉 :=p in

match s with
[inl s1 ⇒

if halt sig M1 s1 then
if s1==q then 〈inr . . . (inl . . . (start sig M2)), None ?〉
else 〈 inr . . . (inr . . . (start sig M3)), None ?〉

else let 〈news1,m〉 :=trans sig M1 〈s1,a〉 in
〈 inl . . .news1,m〉

| inr s ’ ⇒
match s’ with
[inl s2 ⇒ let 〈news2,m〉 :=trans sig M2 〈s2,a〉 in
〈 inr . . . (inl . . .news2),m〉

| inr s3 ⇒ let 〈news3,m〉 :=trans sig M3 〈s3,a〉 in
〈 inr . . . (inr . . .news3),m〉]].� �

� �
definition ifTM :=λsig. λcondM,thenM,elseM:TM sig.λqacc: states sig condM.

mk TM sig
(FinSum (states sig condM) (FinSum (states sig thenM) (states sig elseM)))
(if trans sig condM thenM elseM qacc)
(inl . . . (start sig condM))
(λs.match s with

[inl ⇒ false
| inr s ’ ⇒match s’ with

[inl s2 ⇒ halt sig thenM s2
| inr s3 ⇒ halt sig elseM s3]]).� �

Our realizability semantics is defined on tapes, and not configurations. In
order to observe the accepting state we need to define a suitable variant that we
call conditional realizability, denoted by M |= [q : R1, R2]. The idea is that M
realizes R1 if it terminates the computation on q, and R2 otherwise.� �
definition accRealize :=λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse.
∀t.∃i .∃outc.

loopM sig M i (initc sig M t) = Some ? outc ∧
(cstate ?? outc = acc →Rtrue t (ctape ?? outc)) ∧
(cstate ?? outc 6= acc →Rfalse t (ctape ?? outc)).� �
The semantics of the if-then-else machine can be now elegantly expressed in

the following way:� �
lemma sem if: ∀sig.∀M1,M2,M3:TM sig.∀Rtrue,Rfalse,R2,R3,acc.

M1 |= [acc: Rtrue,Rfalse] →M2 |= R2 →M3 |= R3 →
ifTM sig M1 M2 M3 acc |= (Rtrue ◦R2) ∪(Rfalse ◦ R3).� �
It is also possible to state the semantics in a slightly stronger form: in fact,

we know that if the test is successful we shall end up in a final state of M2 and
otherwise in a final state of M3. If M2 has a single final state, we may express the
semantics by a conditional realizability over this state. As we already observed,
a simple way to force a machine to have a unique final state is to sequentially
compose it with the nop machine. Then, it is possible to prove the following
result (the conditional state is a suitable injection of the unique state of the nop
machine):� �
lemma acc sem if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc.

M1 |= [acc: Rtrue, Rfalse] →M2 |= R2 →M3 |= R3 →
ifTM sig M1 (single finalTM . . .M2) M3 acc |=

[inr . . . (inl . . . (inr . . . start nop)): Rtrue ◦R2, Rfalse ◦ R3].� �
3.3 While

The last machine we are interested in, implements a while-loop over a body
machine M . Its definition is really simple, since we have just to add to M a
single transition leading from a distinguished final state q back to the initial
state.

� �
definition while trans :=λsig. λM : TM sig. λq:states sig M. λp.

let 〈s ,a〉 :=p in
if s == q then 〈start ? M, None ?〉
else trans ? M p.

definition whileTM :=λsig. λM : TM sig. λqacc: states ? M.
mk TM sig

(states ? M)
(while trans sig M qacc)
(start sig M)
(λs.halt sig M s ∧¬ s==qacc).� �
More interesting is the way we can express the semantics of the while machine:

provided that M |= [q : R1, R2], the while machine (relative to q) weakly realizes
R∗1 ◦R2:� �
theorem sem while: ∀sig,M,qacc,Rtrue,Rfalse.

halt sig M qacc = true →
M |= [qacc: Rtrue,Rfalse] →

whileTM sig M qacc ||= (star ? Rtrue) ◦Rfalse.� �
In this case, the use of weak realizability is essential, since we are not guaranteed
to exit the while loop, and the computation can actually diverge. Interestingly,
we can reduce the termination of the while machine to the well foundedness of
Rtrue:� �
theorem terminate while: ∀sig,M,qacc,Rtrue,Rfalse,t.

halt sig M qacc = true →
M |= [qacc: Rtrue,Rfalse] →
WF ? (inv . . .Rtrue) t →whileTM sig M qacc ↓t.� �

4 Basic Machines

A major mistake we made when we started implementing the universal machine
consisted in modelling relatively complex behaviors by directly writing a corre-
sponding Turing Machine. While writing the code is usually not very complex,
proving its correctness is often a nightmare, due to the complexity of specifying
and reasoning about internal states of the machines and all intermediate con-
figurations. A much better approach consists in specifying a small set of basic
machines, and define all other machines by means of the compositional constructs
of the previous section. In this way, we may immediately forget about Turing
Machines’ internals, since the behavior of the whole program only depends on
the behavior of its components.

A very small set of primitive programs turned out to be sufficient for our
purposes (most of them are actually families of machines, parametrized over
some input arguments)

write c write the character c on the tape at the current head position
move r move the head one step to the right
move l move the head one step to the left
test char f perform a boolean test f on the current character and enter state

tc true or tc false according to the result of the test
swap r swap the current character with its right neighbor (if any)
swap l swap the current character with its left neighbor (if any)

The specification of these machines is straightforward. Let us have a glance at
the swap r machine. In order to swap characters we need an auxiliary memory
cell; since tape characters are finite, we may use an internal state (register) of
the machine to this purpose. The machine will sequentially enter in the following
four states:

– swap0: read the current symbol, save it in a register and move right
– swap1: swap the current symbol with the register content, and move back to

the left
– swap2: write the register content at the current position
– swap3: stop

Here is the machine implementation:� �
definition swap r :=
λalpha:FinSet.λfoo:alpha.
mk TM alpha (swap states alpha)
(λp.let 〈q,a〉 :=p in
let 〈q ’,b〉 :=q in
let q’ :=\fst q’ in (∗ extract the witness ∗)
match a with
[None ⇒ 〈〈swap3,foo〉,None ?〉 (∗ if tape is empty then stop ∗)
| Some a’ ⇒
match q’ with
[O ⇒ (∗ q0 ∗) 〈〈swap1,a’〉,Some ? 〈a’,R〉〉 (∗ save in register and move R ∗)
| S q’ ⇒match q’ with

[O ⇒ (∗ q1 ∗) 〈〈swap2,a’〉,Some ? 〈b,L〉〉 (∗ swap with register and move L ∗)
| S q’ ⇒match q’ with

[O ⇒ (∗ q2 ∗) 〈〈swap3,foo〉,Some ? 〈b,N〉〉 (∗ copy from register and stay ∗)
| S q’ ⇒ (∗ q3 ∗) 〈〈swap3,foo〉,None ?〉 (∗ final state ∗)
]]]])

〈swap0,foo〉
(λq.\fst q == swap3).� �

and this is its specification.� �
definition Rswap r :=λalpha,t1,t2.
∀a,b, ls , rs . t1 = midtape alpha ls b (a:: rs) → t2 = midtape alpha ls a (b::rs).� �

It is possibly worth to remark that an advantage of using relations is the possi-
bility of under-specifying the behavior of the program, restricting the attention

to what we expect to be the structure of the input (e.g., in the previous case,
the fact of receiving a mid-tape as the input tape).

The proof that swap r realizes its specification is by cases on the structure of
the tape: three cases are vacuous; the case when the tape is actually a mid-tape
is essentially solved by direct computation.

4.1 Composing machines

Let us see an example of how we can use the previous bricks to build more com-
plex functions. When working with Turing Machines, moving characters around
the tape is a very frequent and essential operation. In particular, we would like
to write a program that moves a character to the left until we reach a special
character taken as a parameter (move char l). A step of the machine essentially
consists of a swap operation, but guarded by a conditional test; then we shall
simply wrap a while machine around this step.� �
definition mcl step :=λalpha:FinSet.λsep:alpha.

ifTM alpha (test char ? (λc.¬ c==sep))
(single finalTM . . . (swap r alpha sep · move l ?)) (nop ?) tc true .

definition Rmcl step true :=λalpha,sep,t1,t2.
∀a,b, ls , rs .
t1 = midtape alpha ls b (a:: rs) →
b 6= sep ∧ t2 = mk tape alpha (tail ? ls) (option hd ? ls) (a :: b :: rs).

definition Rmcl step false :=λalpha,sep,t1,t2.
right ? t1 6= [] → current alpha t1 6= None alpha →

current alpha t1 = Some alpha sep ∧ t2 = t1.

definition mcls acc: ∀alpha:FinSet.∀sep:alpha.states ? (mcl step alpha sep)
:=λalpha,sep.inr . . . (inl . . . (inr . . . start nop)).

lemma sem mcl step :
∀alpha,sep.
mcl step alpha sep |=

[mcls acc alpha sep: Rmcl step true alpha sep, Rmcl step false alpha sep]� �
Here is the full move char l program:� �
definition move char l :=λalpha,sep.

whileTM alpha (mcl step alpha sep) (mlcs acc alpha sep).

definition R move char l :=λalpha,sep,t1,t2.
∀b,a, ls , rs . t1 = midtape alpha ls b (a:: rs) →
(b = sep → t2 = t1) ∧
(∀ls1 , ls2 . ls = ls1@sep::ls2 →
b 6= sep →memb ? sep ls1 = false →
t2 = midtape alpha ls2 sep (a:: reverse ? ls1@b::rs)).� �

� �
lemma sem move char l : ∀alpha,sep.

WRealize alpha (move char l alpha sep) (R move char l alpha sep).� �
In a very similar way, we may define two machines move left to and move right to
that move the head left or right until they meet a character that satisfies a given
condition.

5 Normal Turing Machines

A normal Turing machine is just an ordinary machine where:

1. the tape alphabet is {0, 1};
2. the finite states are supposed to be an initial interval of the natural numbers.

By convention, we assume the starting state is 0.� �
record normalTM : Type :=
{ no states : nat;

pos no states : (0 < no states);
ntrans : (initN no states)×Option bool → (initN no states)×Option (bool×Move);
nhalt : initN no states → bool}.� �

We may easily define a transformation from a normal TM into a traditional
Machine; declaring it as a coercion we allow the type system to freely convert
the former into the latter:� �
definition normalTM to TM :=λM:normalTM.

mk TM FinBool (initN (no states M))
(ntrans M) (mk Sig ?? 0 (pos no states M)) (nhalt M).

coercion normalTM to TM.� �
A normal configuration is a configuration for a normal machine: it only depends
on the number of states of the normal Machine:� �
definition nconfig :=λn. config FinBool (initN n).� �
5.1 Tuples

By general results on FinSets (the Matita library about finite sets) we know that
every function f between two finite sets A and B can be described by means
of a finite graph of pairs 〈a, fa〉. Hence, the transition function of a normal
Turing machine can be described by a finite set of tuples 〈〈i, c〉, 〈j, action〉〉 of
the following type:

(initN n× option bool)× (initN n× option bool ×move)

Unfortunately, this description is not suitable for a Universal Machine, since
such a machine must work with a fixed set of states, while the size on n is
unknown. Hence, we must pass from natural numbers to a representation for
them on a finitary, e.g. binary, alphabet. In general, we shall associate to a pair
〈〈i, c〉, 〈j, action〉〉 a tuple with the following syntactical structure

|wix,wjy, z

where

1. ”|” and ”,” are special characters used as delimiters;

2. wi and wj are list of booleans representing the states i and j;

3. x is special symbol null if c = None and is the boolean a if c = Some a

4. y and z are both null if action = None, and are respectively equal to b and
m′ if action = Some(b,m)

5. finally, m′ = 0 if m = L, m′ = 1 if m = R and m′ = null if m = N

As a minor, additional complication, we shall suppose that every character is
decorated by an additional bit, normally set to false, to be used as a marker.� �
definition mk tuple :=λqin,cin,qout,cout,mv.
〈bar, false 〉 :: qin @ cin :: 〈comma,false〉 :: qout @ cout :: 〈comma,false〉 :: [mv].� �

The actual encoding of states is not very important, and we shall skip it: the
only relevant points are that (a) it is convenient to assume that all states (and
hence all tuples for a given machine) have a fixed, uniform length; (b) the first
bit of the representation of the state tells us if the state is final or not.

5.2 The table of tuples

The list of all tuples, concatenated together, provides the low level description
of the normal Turing Machine to be interpreted by the Universal Machine: we
call it a table.

The main lemma relating a table to the corresponding transition function is
the following one, stating that for a pair 〈s, t〉 belonging to the graph of trans,
and supposing that l is its encoding, then l occurs as a sublist (can be matched)
inside the table associated with trans.� �
lemma trans to match:
∀n.∀h.∀trans: trans source n → trans target n.
∀inp,outp,qin,cin ,qout,cout,mv. trans inp = outp →
tuple encoding n h 〈inp,outp〉 = mk tuple qin cin qout cout mv →
match in table (S n) qin cin qout cout mv

(flatten ? (tuples list n h (graph enum ?? trans))).� �

5.3 The use of marks

We shall use a special alphabet where every character can be marked with an
additional boolean. Marks are typically used in pairs and are meant to identify
(and recall) a source and a target position where some joint operation must be
performed: typically, a comparison or a copy between strings. The main generic
operations involving marks are the following:

mark mark the current cell
clear mark clear the mark (if any) from the current cell
adv mark r shift the mark one position to the right
adv mark l shift the mark one position to the left
adv both marks shift the marks at the right and left of the head one position

to the right
match and advance f if the current character satisfies the boolean test f then

advance both marks and otherwise remove them
adv to mark r move the head to the next mark on the right
adv to mark l move the head to the next mark on the left

5.4 String comparison

Apart from markings, there is an additional small problem in comparing and
copying strings. The natural idea would be to store the character to be com-
pared/copied into a register (i.e. as part of the state); unfortunately, our seman-
tics is not state-aware. The alternative solution we have exploited is to have
a family of machines, each specialized on a given character. So, comparing a
character will consist of testing a character and calling the suitable machine
in charge of checking/writing that particular character at the target position.
This behavior is summarized in the following functions. The comp step subcase
takes as input a character c, and a continuation machine elseM and compares
the current character with c; if the test succeeds it moves to the next mark to
the right, repeats the comparison, and if successful advances both marks; if the
current character is not c, it passes the control to elseM .� �
definition comp step subcase :=λalpha,c,elseM.

ifTM ? (test char ? (λx.x == c))
(move r . . . · adv to mark r ? (is marked alpha) · match and adv ? (λx.x == c))
elseM tc true .� �

A step of the compare machine consists in using the previous function to build
a chain of specialized testing functions on all characters we are interested in
(in this case, true, false, or null), each one passing control to the next one in
cascade:

� �
definition comp step :=

ifTM ? (test char ? (is marked ?))
(single finalTM . . . (comp step subcase FSUnialpha 〈bit false,true〉

(comp step subcase FSUnialpha 〈bit true,true〉
(comp step subcase FSUnialpha 〈null,true〉

(clear mark . . .)))))
(nop ?)
tc true .� �

String comparison is then simply a while over comp step� �
definition compare :=

whileTM ? comp step (inr . . . (inl . . . (inr . . . start nop))).� �
6 The Universal Machine

Working with a single tape, the most efficient way to simulate a given machine
M is by keeping its code always close to the head of the tape, in such a way
that the cost of fetching the next move is independent of the current size of the
tape and only bounded by the dimension of M . The drawback is that simulating
a tape move can require to shift the whole code of M ; assuming however that
this is fixed, we have no further complexity slow-down in the interpretation. The
Universal Machine is hence fair in the sense of [3].

Our universal machine will work with an alphabet comprising booleans and
four additional symbols: “null”, “#” (grid), “|” (bar) and “,” (comma). In addi-
tion, in order to compare cells and to move their content around, it is convenient
to assume the possibility of marking individual cells: so our tape symbols will
actually be pairs of an alphabet symbol and a boolean mark (usually set to
false).

The universal machine must be ready to simulate machines with an arbitrary
number of states. This means that the current state of the simulated machine
cannot be kept in a register (state) of the universal machine, but must be mem-
orized on the tape. We keep it together with the current symbol of the simulated
tape

The general structure of the tape is the following:

α#
⇓
qi0 . . . qinc#table#β

where α, β and c are respectively the left tape, right tape, and current character
of the simulated machine. If there is no current character (i.e. the tape is empty
or we are in a left or right overflow) then c is the special “null” character.
The string wi = qi0 . . . qin is the encoding of the current state qi of M , and
table is the set of tuples encoding the transition function of M , according to
the definition of the previous section. In a well formed configuration we always
have three occurrences of #: a leftmost, a middle and rightmost one; they are

basic milestones to help the machine locating the information on the tape. At
each iteration of a single step of M the universal machine will start with its head
(depicted with ⇓ in the above representation) on the first symbol qi0 of the state.

Each step is simulated by performing two basic operations: fetching in the
table a tuple matching wic (match tuple), and executing the corresponding ac-
tion (exec action). The exec action function is also responsible for updating wic
according to the new state-symbol pair wjd provided by the matched tuple.

If matching succeeds, match tuple is supposed to terminate in the following
configuration, with the head on the middle #

α#wic
⇓
. . . |wic ∗, wjd,m| . . .︸ ︷︷ ︸

table

#β

where moreover the comma preceding the action to be executed will be marked
(marking will be depicted with a ∗ on top of the character). If matching fails,
the head will be on the # at the end of table (marked to discriminate easily this
case from the former one):

α#wic#table

⇓
∗
β

The body of the universal machine is hence the following uni step function,
where tc true is the accepting state of the test char machine (in the next section
we shall dwell into the details of the match tuple and exec action functions).� �
definition uni step :=
ifTM ? (test char STape (λc.\fst c == bit false))

(single finalTM ?
(init match · match tuple ·

(ifTM ? (test char ? (λc.¬ is marked ? c))
(exec action · move r . . .)
(nop ?) tc true)))

(nop ?) tc true .� �
At the end of exec action we must perform a small step to the right to reenter
the expected initial configuration of uni step.

The universal machine is simply a while over uni step:� �
definition universalTM :=whileTM ? uni step us acc.� �
The main semantic properties of uni step and universalTM will be discussed in
Section 9.

7 Matching

Comparing strings on a single tape machine requires moving back and forth
between the two stings, suitably marking the corresponding positions on the

tape. The following initialize match function initializes marks, adding a mark at
the beginning of the source string (the character following the leftmost #, where
the current state, character pair begins), and another one at the beginning of
the table (the character following the middle #):� �
definition init match :=

mark ? · adv to mark r ? (λc:STape.is grid (\ fst c)) · move r ? ·
move r ? · mark ? · move l ? · adv to mark l ? (is marked ?).� �
The match tuple machine scrolls through the tuples in the transition table

until one matching the source string is found. It just repeats, in a while loop,
the operation of trying to match a single tuple discussed in the next section:� �
definition match tuple :=

whileTM ? match tuple step (inr . . . (inl . . . (inr . . . start nop))).� �
7.1 match tuple step

The match tuple step starts checking the halting condition, that is when we have
reached a (rightmost) #. If this is not the case, we execute the “then” branch,
where we compare the two strings starting from the marked characters. If the
two strings are equal, we mark the comma following the matched string in the
table and then we stop on the middle #; otherwise, we mark the next tuple (if
any) and reinitialize the mark at the beginning of the current state-character
pair. If there is no next tuple, we stop on the rightmost grid after marking it.

If on the contrary the match tuple step is executed when the current char-
acter is a #, we execute the “else” branch, which does nothing.� �
definition match tuple step :=

ifTM ? (test char ? (λc:STape.¬ is grid (\ fst c)))
(single finalTM ?

(compare ·
(ifTM ? (test char ? (λc:STape.is grid (\ fst c)))

(nop ?)
(mark next tuple ·

(ifTM ? (test char ? (λc:STape.is grid (\ fst c)))
(mark ?) (move l ? · init current) tc true)) tc true)))

(nop ?) tc true .� �
The match tuple step is iterated until we end up in the “else” branch, mean-

ing the head is reading a #. The calling machine can distinguish whether we
ended up in a failure or success state depending on whether the # is marked or
not.

8 Action Execution

Executing an action can be decomposed in two simpler operations, which can be
executed sequentially: updating the current state and the character under the

(simulated) tape head (copy), and moving the (simulated) tape (move tape).
Similarly to matching, copying is done one character at a time, and requires a
suitable marking of the tape (and a suitable initialization init copy). As we shall
see, the copy machine will end up clearing all marks, halting with the head on
the comma preceding the tape move. Since tape move expects to start with the
head on the move, we must move the head one step to the right before calling
it.� �
definition exec action :=

init copy · copy · move r . . . · move tape.� �
8.1 init copy

The init copy machine initializes the tape marking the positions corresponding
to the the cell to be copied and its destination (with the head ending up on the
former). In our case, the destination is the position on the right of the leftmost
#, while the source is the action following the comma in the tuple that has been
matched in the table (that is the position to the right of the currently marked
cell). In graphical terms, the init copy machine transforms a tape of the form

α#qi0 . . . qinc# . . . |wka
⇓
∗, qj0 . . . qjnd,m| . . .︸ ︷︷ ︸

table

#β

into

α#
∗
qi0 . . . qinc# . . . |wka,

⇓
∗
qj0 . . . qjnd,m| . . .︸ ︷︷ ︸

table

#β

This is the corresponding code:� �
definition init copy :=

init current on match · move r ? ·
adv to mark r ? (is marked ?) · adv mark r ?.� �

where� �
definition init current on match :=

move l ? · adv to mark l ? (λc:STape.is grid (\ fst c)) · move r ? · mark ?.� �
8.2 copy

The copy machine copies the portion of the tape starting on the left mark and
ending with a comma to a portion of the tape of the same length starting on the
right mark. The machine is implemented as a while machine whose body copies

one bit at a time, and advances the marks. In our case, this will allow us to pass
from a configuration of the kind

α#
∗
qi0 . . . qinc# . . . |wka,

⇓
∗
qj0 . . . qjnd,m| . . .︸ ︷︷ ︸

table

#β

to a configuration like

α#qj0 . . . qjnd# . . . |wka, qj0 . . . qjnd
⇓, m| . . .︸ ︷︷ ︸

table

#β

As a special case, d can be a null rather than a bit: this identifies those actions
that do not write a character to the tape. The copy machine acts accordingly,
ignoring nulls and leaving c untouched.

Note that the copy machine will remove all marks before exiting.

8.3 move tape

Finally, the move tape machine mimics the move action on the simulated tape.
This is a complex operation, since we must skip the code of the simulated ma-
chine and its state. The main function just tests the character encoding the move
action and calls three more elementary functions: move tape r , move tape l , and
no move:� �
definition move tape :=

ifTM ? (test char ? (λc:STape.c == 〈bit false, false 〉))
(adv to mark r ? (λc:STape.is grid (\ fst c)) · move tape l)
(ifTM ? (test char ? (λc:STape.c == 〈bit true,false〉))

(adv to mark r ? (λc:STape.is grid (\ fst c)) · move tape r)
(no move ?) tc true) tc true .� �

The no move machine is pretty simple since it is merely responsible for resetting
the head of tape at the expected output position, that is on the leftmost #:� �
definition no move :=

adv to mark l ? (λc:STape.is grid (\ fst c)) ·
move l . . . · adv to mark l ? (λc:STape.is grid (\ fst c)))� �

The other two functions are pretty similar and we shall only discuss the first
one.

8.4 move tape r

The move tape right is conceptually composed of three sub-functions, executed
sequentially: a fetch r function, that advances the head to the first character of
the simulated right tape (that is, the first character after the rightmost #), and
initializes it to null if the tape is empty; a set new current r function that moves

it to the “current” position, that is at the position at the left of the middle #;
and finally a move old current r, that moves the old “current” value (which is
now just at the left of the tape head), as first symbol of the left tape (that is, just
after the the leftmost #). The last two functions are in fact very similar: they
have just to move a character after the first # at their left (move after left grid)

This is the evolution of the tape, supposing the right tape is not empty:

α#wjd#table
⇓
bβ fetch r

α#wjd#table
⇓
b #β move after left grid

α#wjd
⇓
b #table#β move l

α#wj

⇓
d b#table#β move after left grid

α
⇓
d #wjb#table#β move r

αd
⇓
wjb#table#β

This is the code for the above machines:� �
definition fetch r :=

move r . . . · init cell · move l . . . · swap r STape 〈grid,false 〉 .

definition move after left grid :=
move l . . . · move char l STape 〈grid, false 〉 · swap r STape 〈grid,false 〉 .

definition move tape r :=
fetch r · move after left grid · move l . . . · move after left grid · move r� �

init cell is an atomic machine defined in the obvious way.

9 Main Results

Given a configuration for a normal machine M, the following function builds the
corresponding “low level” representation, that is the actual tape manipulated by
the Universal Machine:� �
definition low config: ∀M:normalTM.nconfig (no states M) → tape STape :=
λM:normalTM.λc.

let n :=no states M in
let h :=nhalt M in
let t :=ntrans M in
let q :=cstate . . . c in
let q low := m bits of state n h q in
let current low :=

match current . . . (ctape . . . c) with
[None ⇒ null | Some b ⇒ bit b] in

let low left :=map . . . (λb.〈bit b,false〉) (left . . . (ctape . . . c)) in
let low right :=map . . . (λb.〈bit b,false〉) (right . . . (ctape . . . c)) in

let table :=flatten ? (tuples list n h (graph enum ?? t)) in
let right :=

q low@〈current low,false〉 :: 〈grid , false 〉 :: table@〈grid, false 〉 :: low right in
mk tape STape (〈grid,false〉 :: low left) (option hd . . . right) (tail . . . right).� �

Similarly, every relation over tapes can be reflected into a corresponding relation
on their low-level representations:� �
definition low R :=λM,qstart,R,t1,t2.
∀tape1. t1 = low config M (mk config ?? qstart tape1) →
∃q,tape2.R tape1 tape2 ∧
halt ? M q = true ∧ t2 = low config M (mk config ?? q tape2).� �
We expect the Universal Machine to be able to simulate on its tape each step

of the machine M, and to stop leaving the tape unchanged when M stops. The
machine must be able to end up in a special accepting state us acc in the former
case, and in a different state in the latter. The input-output relation realized by
the machine in the two cases are the following:� �
definition low step R true :=λt1,t2.
∀M:normalTM.∀c: nconfig (no states M).

t1 = low config M c →
halt ? M (cstate . . . c) = false ∧ t2 = low config M (step ? M c).

definition low step R false :=λt1,t2.
∀M:normalTM.
∀c: nconfig (no states M).

t1 = low config M c →halt ? M (cstate . . . c) = true ∧ t1 = t2.

lemma sem uni step1:
uni step |= [us acc: low step R true, low step R false].� �

For the universal machine we proved that, for any normal machine M , it
weakly realizes the low level version of the canonical relation for M� �
theorem sem universal: ∀M:normalTM. ∀qstart.

universalTM ||= (low R M qstart (R TM FinBool M qstart)).� �
From this result it is easy to derive that, for any relation weakly realized by M ,
the universal machine weakly realizes its low level counterpart.� �
theorem sem universal2: ∀M:normalTM. ∀R.

M ||= R →universalTM ||= (low R M (start ? M) R).� �
Termination is stated by the following result, whose proof is still in progress.� �
theorem terminate UTM: ∀M:normalTM.∀t.

M ↓ t → universalTM ↓ (low config M (mk config ?? (start ? M) t)).� �

10 Conclusions

We provided in this paper some preliminary results about formal specification
and verification of Turing Machines, up to the definition of a universal machine
and the proof of its correctness. The work is organized in 15 files (see Figure 1),
for a total of 6743 lines (comprising comments). It has been developed by the two
authors during 2.5 months of intense joint work, at the good rate of more than
300 lines per man-week (see [4] for an estimation of the cost of formalization at
the current state of the art).

name dimension content

mono.ma 475 lines mono-tape Turing machines
if machine.ma 335 lines conditional composition
while machine 166 lines while composition
basic machines.ma 282 lines basic atomic machines
move char.ma 310 lines character copying
alphabet.ma 110 lines alphabet of the universal machine
marks.ma 901 lines operations exploiting marks
compare.ma 506 lines string comparison
copy.ma 579 lines string copy
normalTM.ma 319 lines normal Turing machines
tuples.ma 276 lines normal Turing machines
match machines.ma 727 lines machines implementing matching
move tape.ma 778 lines machines for moving the simulated tape
uni step.ma 585 lines emulation of a high-level step
universal.ma 394 lines the universal machine

total 6743 lines

Fig. 1. List of files and their dimension in lines
.

One could possibly wonder what is the actual purpose for performing a similar
effort, but the real question is in fact the opposite one: what could be the reason
for not doing it, since it requires a relatively modest investment in time and
resources? The added value of having a complete, executable, and automatically
verifiable specification is clear, and it could certainly help to improve confidence
(of students, if not of researchers) in a delicate topic that, especially in modern
textbooks, is handled in a very superficial way.

The development presented in this paper is still very preliminary, under many
respects. In particular, the fact that the universal machine operates with a dif-
ferent alphabet with respect to the machines it simulates is annoying. Of course,
any machine can be turned into a normal Turing machine, but this transfor-
mation may require a recoding of the alphabet that is not entirely transparent
to complexity issues: for example, prefixing every character in a string x1 . . . xn
with a 0 in order to get the new string 0x1 . . . 0xn could take, on a single tape

Turing Machine, a time quadratic in the length n of the string (this is precisely
the kind of problems that raises a legitimate suspicion on the actual complexity
of a true interpreter).

Complexity Theory, more than Computability, is indeed the real, final target
of our research. Any modern textbook in Complexity Theory (see e.g. [2]) starts
with introducing Turing Machines just to claim, immediately after, that the
computational model does not matter. The natural question we are addressing
and that we hope to contribute to clarify is: what matters?

The way we plan to attack the problem is by reversing the usual deductive
practice of deriving theorems from axioms, reconstructing from proofs the basic
assumptions underlying the major notions and results of Complexity Theory. The
final goal of our Reverse Complexity Program is to obtain a formal, axiomatic
treatment of Complexity Theory at a comfortable level of abstraction, providing
in particular logical characterizations of Complexity Classes that could help
to better grasp their essence, identify their distinctive properties, suggest new,
possibly non-standard computational models and finally provide new tools for
separating them.

The axiomatization must obviously be validated with respect to traditional
cost models, and in particular w.r.t. Turing Machines that still provide the actual
foundation for this discipline. Hence, in conjunction with the “reverse” approach,
it is also important to promote a more traditional forward approach, deriving out
of concrete models the key ingredients for the study of their complexity aspects.
The work in this paper, is meant to be a contribution along this second line of
research.

References

1. R. Amadio, Andrea Asperti, Nicholas Ayache, B. Campbell, D. Mulligan, R. Pol-
lack, Yann Régis-Gianas, Claudio Sacerdoti Coen, and I. Stark. Certified complex-
ity. Procedia CS, 7:175–177, 2011.

2. Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge Univ. Press, 2009.

3. Andrea Asperti. The intensional content of rice’s theorem. In Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), January 7-12, 2008, San Francisco, California, USA, pages 113–
119. ACM, 2008.

4. Andrea Asperti and Claudio Sacerdoti Coen. Some considerations on the usability
of interactive provers. In Intelligent Computer Mathematics, 10th International
Conference, Paris, France, July 5-10, 2010, volume 6167 of Lecture Notes in Com-
puter Science, pages 147–156. Springer, 2010.

5. Andrea Asperti and Jeremy Avigad (eds). Special issue on interactive theorem
proving and the formalisation of mathematics. Mathematical Structures in Com-
puter Science, 21(4), 2011.

6. Andrea Asperti and Wilmer Ricciotti. A web interface for matita. In Proceedings
of Intelligent Computer Mathematics (CICM 2012), Bremen, Germany, volume
7362 of Lecture Notes in Artificial Intelligence. Springer, 2012.

7. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. Hints
in unification. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, TPHOLs, volume 5674 of Lecture Notes in Computer Science,
pages 84–98. Springer, 2009.

8. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. The
Matita interactive theorem prover. In Proceedings of the 23rd International Con-
ference on Automated Deduction (CADE-2011), Wroclaw, Poland, volume 6803 of
LNCS, 2011.

9. Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A formally verified
proof of the prime number theorem. ACM Trans. Comput. Log., 9(1), 2007.

10. Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, pages 3–15. ACM, 2008.

11. Martin Davis. Computability and Unsolvability. Dover Publications, 1985.
12. R. E. Stearns F. C. Hennie. Two-tape simulation of multi tape turing machines.

Journal of ACM, 13(4):533–546, 1966.
13. Patrick C. Fischer. On formalisms for turing machines. J. ACM, 12(4):570–580,

1965.
14. Thomas Hales, Georges Gonthier, John Harrison, and Freek Wiedijk. A Special

Issue on Formal Proof. Notices of the American Mathematical Society, 55, 2008.
15. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.

Transaction of the American Mathematical Society, 117:285–306, 1965.
16. F. C. Hennie. One-tape, off-line turing machine computations. Information and

Control, 8(6):553–578, 1965.
17. John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-

guages, and computation. Addison-Wesley, 1979.
18. Gerwin Klein. Operating system verification – an overview. Sadhana, 34(1):27–69,

2009.
19. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-

piler with a proof assistant. In Proc. of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2006, Charleston, South
Carolina, USA, pages 42–54, 2006.

20. Michael Norrish. Mechanised computability theory. In Interactive Theorem Prov-
ing - Second International Conference, ITP 2011, Berg en Dal, The Netherlands,
August 22-25, 2011. Proceedings, volume 6898 of Lecture Notes in Computer Sci-
ence, pages 297–311. Springer, 2011.

21. Michael Sipser. Introduction to the Theory of Computation. PWS, 1996.
22. Alan M. Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proc. of the London Math. Society, 2(42):230–265, 1936.
23. Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical

Computer Science, Volume A: Algorithms and Complexity (A), pages 1–66. 1990.
24. Stephanie Weirich and Benjamin Pierce (eds). Special issue on the poplmark

challenge. Journal of Automated Reasoning, 2011. Published online.
25. Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated verifica-

tion of a type-safe operating system. Commun. ACM, 54(12):123–131, 2011.

