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Abstract. Ambiguous notation is a powerful tool developed to deal with
the complexity of mathematics without sacrificing clarity or conciseness.
In the mechanized parsing of ambiguous terms, a disambiguation algo-
rithm can be used to provide the system with the intelligence necessary to
select valid interpretations for the overloaded symbols received in input.
Disambiguation works by means of an incremental analysis of the input
term, progressively discarding all invalid interpretations. As a result, if
the input term cannot be disambiguated, many errors will be produced,
only a handful of which are truly meaningful to the user.
In this paper, we improve the existing technique to classify disambigua-
tion errors by introducing a new heuristic to sort errors from the most
meaningful to the least, showing that it can be implemented in a natural
way in the existing disambiguation algorithm. We also describe a neat
interface to present disambiguation errors to the user, suitable for the
use in interactive theorem proving applications.

1 Introduction

One of the most notable features of mathematical notation is ambiguity: for
instance, it is possible to overload operators, as long as the intended interpre-
tation of a given formula can be inferred from its context. On the other hand,
results to be stored in formal libraries of interactive provers [13], need to be in
an unambiguous form.

Ambiguous notation serves an important purpose, hiding redundant infor-
mation and providing a standardized lexicon through which mathematicians
can communicate more easily. It is therefore important that tools for mecha-
nized mathematics be able to bridge the gap between mathematical notation
and the unambiguous formalism used by the system. Hence, all interactive theo-
rem provers address the issue of ambiguous notation in some way. Some provers
try to resolve the ambiguity at parsing time by means of a deterministic system
of interpretation scopes (an approach used in Coq). A more sophisticated tech-
nique popularized by the Haskell programming language and extended to theo-
rem proving first in Isabelle, then in Coq and Matita, is that of type classes [12];
in this case every notation is associated unambiguously to a certain type class
and parsed as such; each type class provides several possible overloaded instances
of the notation, allowing the intended one to be selected later on during semantic
analysis.



A different approach supported in Matita [3] since the very beginning, al-
lows the parser to produce an ambiguous abstract syntax tree from ambiguous
notation, which is later fed to a component called disambiguator, in charge of
deriving all the possible well-typed interpretations. This paper is an ideal contin-
uation of two works by Sacerdoti Coen and Zacchiroli about the implementation
of disambiguators [9, 10]. In particular, we focus on disambiguation errors and
how to predict how much informative they are going to be for the user.

While the disambiguator approach has a great flexibility, it turns out that
error reporting in this setting has an even more critical status than in type-
checking. Usually the disambiguation process fails because of a single mistake
by the user: in such a case, a human reader is often able to infer the intended
meaning of the user input and spot the mistake; from the system perspective,
however, each combination of the possible interpretations of ambiguous parts of
the input will yield a different error. That is to say, when the disambiguation
process fails, we may be left with dozens of failing interpretations and no clear
way to recognize the interesting ones.

Our goal is to allow users to recover their intended interpretation from the
heap of failures in order to understand what went wrong. We do this by pro-
viding a heuristic criterion to rate how likely an interpretation is to be the one
intended by the user. This criterion is implemented as a straightforward addition
to Sacerdoti Coen and Zacchiroli’s efficient disambiguation algorithm.

The structure of the paper is as follows: Section 2 deals with the notion of
disambiguation and provides definitions that will be used in the rest of the paper;
Section 3 recalls the efficient disambiguation, which will serve as a basis for the
rest of this work. Our contributions are described beginning in Section 4, where
we discuss some drawbacks of a previous technique to detect so called spurious
errors; Section 5 presents an entirely novel criterion providing a quantitative
analysis of how much errors can be expected to be relevant and discusses an
extension of the disambiguation algorithm yielding this finer classification; Sec-
tion 6 presents a user interface for reporting disambiguation errors in an orderly
way. Both the algorithm and the user interface have been implemented and are
used as part of the Matita web application1.

2 The notion of disambiguation

In the handbook approach to compilation, the semantic analysis phase is in
charge of associating to an abstract syntax tree (AST) at most one interpreta-
tion (or no interpretation at all in the case of a static semantic error). In the
context of the formalization of mathematics, however, we are willing to allow the
user to employ the standard, ambiguous mathematical syntax, with the maxi-
mum degree of flexibility. In this scenario, the ambiguity of concrete syntax is
transferred by the parser to an ambiguous AST, where by ‘ambiguous’ we mean
that it admits more than one interpretation. The process associating an AST to

1 See http://matita.cs.unibo.it/matitaweb.shtml



the set of all its valid interpretations is called disambiguation. We will now make
these concepts more formal.

In this discussion, we will provide an abstract presentation to avoid sticking
to a specific syntax or formalism. We will call AST a tree built from primitive
nodes in the set S; the set of ASTs will be denoted by A. For every node in s ∈ S
there exists an associated interpretation domain Ds which we will also regard as
primitive.

A node in an AST can be either ambiguous or disambiguated. An ambiguous
node is a bare primitive node (obtained by parsing ambiguous concrete syntax);
a disambiguated node is a pair 〈s, d〉 such that d is an interpretation in Ds.
Disambiguated nodes can be an intermediate product of disambiguation, but
can also result from parsing of unambiguous concrete syntax (which in turn can
be a deliberate choice of the user, or the refinement of ambiguous user syntax
by means of disambiguation feedback). A given node may occur multiple times
in an AST, therefore we will denote occurrences (i.e. positions in an AST) by
n, n′, . . .. The lookup operation returning the node at position n in the AST t is
denoted t(n).

We call an AST containing occurrences of ambiguous nodes an ambiguous
AST, and an AST containing only disambiguated nodes an unambiguous AST.
The set of unambiguous ASTs is denoted A. The set of the occurrences of ambigu-
ous nodes in an AST t is called domain of t and denoted dom(t). A substitution
for an AST t is a finite partial map from the domain of t to disambiguated nodes,
such that an occurrence of an ambiguous node s is mapped to a corresponding
disambiguated node 〈s, d〉. The substitution map is lifted from nodes to ASTs
in the obvious way. We say that an AST t′ is an instance of another AST t, or
equivalently that t is a generalization of t′ (notation: t � t′) if there exists a
substitution σ such that t′ = tσ. The following property follows immediately.

Lemma 1. � is a partial order relation.

Our intuition tells us that the semantics of an unambiguous AST is unique
and that the semantics of an ambiguous AST is the union of the semantics of all
its unambiguous instances. For our purposes, we can identify the set of semantics
of ASTs with the set of unambiguous ASTs A. The semantics of ASTs is then
formalized as follows:

Definition 1. The semantics of ASTs J·K : A→ ℘(A) is a function associating
to any AST the set of all its unambiguous instances

JtK = {t′ ∈ A : t � t′}

Since every unambiguous AST is the only instance of itself, according to the
above definition, the semantics of an unambiguous AST is a singleton, regardless
of the intepretations of its nodes, as expected. However, this definition is in a
sense too loose to be of any use, because it says nothing about the coherence
of the interpretations we chose. The most obvious example of incoherence is ill-
typedness: if our choices yield an ill-typed AST, that AST must be considered



meaningless and thus discarded. In our abstract context, we do not employ any
concrete notion of well-typedness, but rather we will assume the existence of an
oracle R deciding whether an AST is valid or not: the oracle will return 3 in
the former case, and an informative error message otherwise.

Definition 2. The disambiguation function D : A → ℘(A) maps any AST to
the set of all its valid interpretations

D(t) = {t′ ∈ JtK : R(t′) = 3}

A trivial algorithm implementing D consists of computing the set of all
ground instances of the AST to be disambiguated and then filtering through
the oracle R. This technique is clearly inefficient, since the number of ground
instances of an AST is exponential in the number of its ambiguous nodes.

3 A disambiguation algorithm

Efficient implementations of disambiguation operate by incrementally instanti-
ating the original AST, immediately pruning those partial instances which can
already be shown to be invalid by the oracle, and iterating the process until
no ambiguous nodes are left. Early pruning leads to enormous performance im-
provements.

In order for this kind of implementation to work, we must relax the definition
of R to allow it to take ambiguous ASTs as input too. In this case, we want R
to always return 3 if the input AST can be instantiated to a valid unambiguous
AST, because only invalid instances should be pruned. When this condition is
satisfied, we clearly want as many ASTs as possible to be rejected, to minimize
the number of incremental instantiations.

In summary, we would like the oracle to return an error if and only if all the
instances of the input AST are invalid. However, in general we are not able to
identify all the ambiguous ASTs not admitting valid instantiations: this happens
for two reasons:

– while some errors are located in disambiguated parts of the AST and can be
immediately recognized as such, other errors, located in ambiguous parts,
can only be recognized after disambiguation of some nodes: to detect such
errors, it is necessary to first instantiate some ambiguous nodes, making an
efficient implementation of R impossible;

– in the case where all instances of the input AST are invalid, R should re-
turn a single message explaining why all such instances cannot be accepted:
unfortunately, it may be the case that all the instances are invalid, but each
of them is invalid for a different reason.

Our disambiguation algorithm will therefore assume that ASTs rejected by
R are invalid for all possible instantiations, but the inverse implication will not
hold in general.



Property 1. Given a (possibly ambiguous) AST t, if R(t) returns an error, then
all instances of t are not valid.

Property 2. If R(t) returns an error, that error is meaningful for all instances of
t.

Given a set of ASTs Σ, we define the notations Σ3 and Σ7 as follows:

Σ3 = {t|t ∈ Σ ∧R(t) = 3}
Σ7 = {〈t,R(t)〉|t ∈ Σ ∧R(t) 6= 3}

Therefore, Σ3 will contain the subset of all the ASTs that are still valid, while
Σ7 will contain all the invalid ASTs in Σ paired with their error messages.

We can now show the “efficient” disambiguation algorithm originally pre-
sented in [9]. It follows the aforementioned criterion of incremental instantiation
of the input AST.

procedure disambiguate(t)
begin

Σ ← {t}3; Ω ← {t}7;
while (Σ 6= ∅ ∧ next(Σ) 6= 7)

begin
n ← next(Σ);
∆ ← {u[n 7→ 〈u(n), d〉]|u ∈ Σ, d ∈ Du(n)};
Σ ← ∆3; Ω ← Ω ∪ ∆7;

end
return Σ,Ω

end

The algorithm maintains a set Σ of partially disambiguated instances of the in-
put AST t, ensuring that they share the same domain and have not been rejected
by R yet (Σ is initialized as the singleton {t}, except when t is immediately re-
jected by R, in which case it is initialized as the empty set, leading to failure).
The algorithm is parametric on a procedure next taking as input a set of ASTs
sharing the same domain and returning an element of that domain (an ambigu-
ous node occurrence), or 7 if no ambiguous node is left. In the while cycle, we
choose a node next(Σ) from the domain of Σ and instantiate it in all possi-
ble ways, obtaining a new set ∆. We then filter out invalid instances obtaining
a new set Σ to continue iteration. The cycle stops when either all ambiguous
nodes have been instantiated (next(Σ) = 7), meaning the disambiguation was
successful, or when Σ is empty, meaning all the instances of t are invalid. Ω is
used to collect all the errors produced by R.

To discuss the properties of the algorithm, we introduce a notation to refer
to the value of a variable at a specific iteration of a while cycle: we will use v0
to denote the value of a variable v before the first iteration, and vi to denote its
value at the end of the i-th iteration.

Lemma 2. In an execution of disambiguate(t), for all i ≥ 1, each AST t′ in
∆i is such that |dom(t′)| = |dom(t)| − i



Proof. By induction on i: when i = 1, we instantiate a single ambiguous node
from the original AST t, and the thesis follows easily; when i > 1, we know
that Σi−1 is a subset of ∆i−1, so by induction hypothesis every AST in it has
a domain of cardinality |dom(t)| − i + 1: to compute ∆i, we instantiate one
ambiguous node more, therefore getting a domain of cardinality dom(t) − i, as
needed.

Lemma 3. The disambiguate algorithm terminates after at most |dom(t)| ex-
ecutions of the while cycle.

Proof. Trivial, since at each iteration, either Σ becomes empty (and the algo-
rithm terminates immediately), or the number of ambiguous nodes in Σ de-
creases by one (easily proved by means of Lemma 2), eventually reaching 0 and
falsifying the guard of the while cycle.

Lemma 4. Given an AST t, for all t′ ∈ A such that t � t′ and for all i ≤
|dom(t)|, there exists t′′ such that t � t′′ � t′ and either t′′ ∈ Σi and R(t′′) = 3,
or t′′ ∈ Ωi and R(t′′) 6= 3.

Proof. We proceed by induction on i. If i = 0, then we choose t′′ = t and the
statement is satisfied. If i > 0, by induction hypothesis there exists t′′′ such
that t � t′′′ � t′ and either R(t′′′) = 3 and t′′′ ∈ Σi−1 or R(t′′′) 6= 3 and
t′′′ ∈ Ωi−1. If t′′′ ∈ Ωi−1, we choose t′′ = t′′′ and get the thesis since Ωi−1 ⊆ Ωi.
If t′′′ ∈ Σi−1, we choose t′′ = t′′′[ni 7→ t′(ni)]: clearly t � t′′ � t′ by definition;
furthermore, t′′ ∈ ∆i. If R(t′′) = 3, then we proved that t′′ ∈ Σi; otherwise,
t′′ ∈ Ωi. In both cases, the thesis holds.

The two following theorems assert the soundness of the algorithm, respec-
tively saying that the Σ returned by the algorithm is the set of all valid disam-
biguated instances of the input, and that all invalid disambiguated instances of
the input have an invalid generalization in the Ω returned by the algorithm (or
equivalently, that Ω contains an error explaining why that AST is invalid).

Theorem 1. The set Σ returned by disambiguate(t) is equal to D(t).

Proof. We prove that the algorithm returns a Σ such that Σ ⊆ D(t) and Σ ⊇
D(t).

Σ ⊆ D(t): Since only valid ASTs ever enter Σ and the cycle only terminates
when the domain of ASTs in Σ is empty (or Σ = ∅), Σ only contains
unambiguous valid ASTs, thus Σ ⊆ D(t).

Σ ⊇ D(t): By lemmata 3 and 4, we can prove that at the last execution of the
while cycle, for all t′ ∈ D(t), there exists t′′ � t′ such that t′′ ∈ Σ; this
implies Σ is not empty and t′′ is unambiguous (otherwise, the cycle would
execute another time). It thus follows that t′′ = t′ and, consequently, t′ ∈ Σ.

Theorem 2. Let t be an AST and Ω the error collection returned by
disambiguate(t). Then:



1. given an AST t′ and an error message e such that 〈t′, e〉 ∈ Ω, for all t′′ such
that t′ � t′′ we have R(t′′) 6= 3;

2. for all t′ such that t � t′ and t′ /∈ D(t), there exists an AST t′′ such that
t � t′′ � t′ and 〈t′′,R(t′′)〉 ∈ Ω.

Proof. Part 1 is trivial (only invalid ASTs enter Ω, and by Property 1 of R, all
their instances must also be invalid).
To prove part 2, let k be the number of iterations after which the algorithm
terminates. We have Σ = Σk and Ω = Ωk: thus by using Lemma 4 with i = k,
we get a t′′ such that t � t′′ � t′ and either t′′ ∈ Σ or t′′ ∈ Ω. In the first case
by Theorem 1, t′′ ∈ D(t). This implies t′′ is also unambiguous, thus from t′′ � t′
we also get t′′ = t′. But then t′ ∈ D(t), which falsifies our hypothesis. If instead
t′′ ∈ Ω, the thesis follows immediately.

The choice of next influences both efficiency and the errors returned by
the algorithm. Since in general the interpretation of one node constrains the
interpretation of all its children, while the constraints imposed by a node to
its parent and siblings are much less restrictive (if they exist at all), and since,
as we noted, the constraints we imposed on the validity test are such that no
reasonable implementation is allowed to consider the children of an ambiguous
node, the next function should be implemented by visiting the nodes nearest to
the root first, as in a pre-order or level-order (breadth first) traversal.

4 Spurious errors

When disambiguation is successful, it is generally going to return a small set of
choices (most usually, just one), all of which are meaningful: in this case, the
errors produced during the disambiguation process can be ignored. If disam-
biguation fails, however, we want to provide the user with information on what
went wrong, by returning to him the Ω set computed by disambiguate. This set
can easily contain a large amount of invalid interpretations that to the system
are equally wrong, even though the user is likely to have committed just one
mistake; the vast majority of errors produced by the disambiguation algorithm
is spurious: they do not correspond to a user error, but are only a technical
means to drive the disambiguation algorithm to the correct interpretation (if it
exists).

In order to provide the user with more accurate information, a heuristic
criterion to distinguish genuine errors from spurious errors was introduced in [10]:

Criterion 1 (Spurious Error Detection) An error is spurious when it is lo-
calized in a sub-formula F such that there is an alternative interpretation of the
formula such that no error is located in F .

The meaning of the criterion is clear: the system should try to interpret
the input AST as much as possible and keep as real errors only those that are
“unrecoverable”, i.e. those for which no alternative valid interpretation exists.



However Criterion 1 lacks a clear implementation, especially because an efficient
algorithm (like the one presented in the previous section) does not consider
all possible interpretations (and consequently all possible errors) of the input
AST. For this reason, the following restriction of the criterion2, allowing a more
obvious implementation, has been suggested in the aforementioned paper (here
rephrased to make it agree with our simpler presentation of Section 2):

Criterion 2 (Draconian Spurious Error Detection) During the disambig-
uation of t, an error message relative to an instance t′ of t is spurious iff there
exists an occurrence n ∈ dom(t) and an alternative instance t′′ of t such that:

1. t′(n) 6= t′′(n);
2. t′, t′′ are both unambiguous on all n′ preceding n in pre-order;
3. R(t′′) = 3;

Let us point out the heuristic status of the criterion: the causal relation between
the interpretation of a node and an error is informal and cannot be grasped
accurately by any disambiguation algorithm. In practice, this means that we
may sometimes find genuine errors classified as spurious.

A second suspicious point is the second requirement of the criterion, explic-
itly stating the traversal algorithm to be used in the disambiguation process.
The choice of a pre-order traversal is sensible but arbitrary (a breadth-first
traversal also enjoys good properties with respect to the disambiguation algo-
rithm). Indeed, the classification of spurious errors is dependent on the order
in which subterms are considered: in some cases, opposite classifications can be
performed on semantically equivalent terms, differing only by a commutativity
property. The next example shows this anomaly.

Example 1. Consider the concrete syntax

(α+ β) + (α+ γ) = (x + y) + (x + z)

where α, β, γ are interpreted to be in R and x,y, z in R2. Assume that the
interpretation domain for + contains elements plusR and plusV representing
respectively sum on real scalars and vectors; similarly, the domain for = will
contain interpretations eqR and eqV for equality on scalars and vectors. In a
disambiguation algorithm classifying spurious errors, the nodes will be consid-
ered and assigned interpretations in the pre-order sequence; disambiguation of
the above formula will fail because the two sides of the equality have different
types. Immediately before failure, the only instance of the original AST still
being processed is

(α+plusR β) +plusR (α+plusR γ) =eqR (x+y) +plusR (x + z)

where the symbol being considered is the underlined one. Both interpretations
in its domain will fail, returning errors:

2 The criterion is called draconian because it recognizes as spurious more errors than
the prudent criterion also proposed in [10]. It is not possible to discuss both the
criteria here due to space contraints, but the considerations we are going to draw
apply to the prudent criterion as well.



• (α +plusR β) +plusR (α +plusR γ) =eqR (x +plusR y) +plusR (x + z): x has type
vector but is here used as a scalar

• (α +plusR β) +plusR (α +plusR γ) =eqR (x +plusV y) +plusR (x + z): x +plusV y
has type vector but is here used as a scalar

After generating those errors, no valid interpretation is left and the algorithm
will stop. Errors produced by the disambiguation of preceding nodes in the pre-
order sequence will be flagged as spurious by the draconian criterion, including
the errors precluding the plusV interpretation for α+ β:

• (α+plusR β) +plusV (α+ γ) =eqV (x+ y) + (x+ z): α+plusR β has type scalar
but is here used as a vector

• (α +plusV β) +plusR (α + γ) =eqR (x + y) + (x + z): α has type scalar but is
here used as a vector

If on the contrary we consider the symmetric equation

(x + y) + (x + z) = (α+ β) + (α+ γ)

the disambiguation will proceed until the only interpretation left is:

(x +plusV y) +plusV (x +plusV z) =eqV (α+β) +plusV (α+ γ)

The system will then return the following errors as meaningful:

– (x +plusV y) +plusV (x +plusV z) =eqV (α +plusR β) +plusV (α + γ): α +plusR β
has type scalar but is here used as a vector

– (x +plusV y) +plusV (x +plusV z) =eqV (α +plusV β) +plusV (α + γ): α has type
scalar but is here used as a vector

In this case, the errors about x+y will be flagged as spurious, showing that the
notion of spuriousness is not stable under minor syntactic modifications of the
input. Arguably, in both versions of the equation, x + y and α + β are equally
wrong (since they are both responsible for the whole equation being rejected).

5 Error rating

Example 1 shows that in some cases an error is classified as spurious only because
of its position in the formula to be disambiguated, even though a user would
recognize it as a real error. We attribute this anomaly to the extreme coarseness
of the distinction spurious/non-spurious: if we could establish a rating criterion
capable of distinguishing more than two degrees of significance, it would be
possible to present errors to the user so that the most meaningful come first,
followed by the less meaningful in a gradual fashion.

Our intent is therefore to understand what are the features of an error that
is meaningful to the user. Typically, a meaningful error tells the user something
interesting by contrasting large valid subterms with a single incoherent node;
according to this point of view, an erroneous AST should be rated depending on



its valid generalizations. Let us call maximal valid generalization of a (possibly
invalid) AST t an AST t′ that is a valid generalization of t and such that all
other valid generalizations of t have fewer intepreted nodes than t′. The more
nodes are interpreted by t′, the better the rating of t should be.

Essentially, when rating erroneous interpretations, we want to privilege those
that are closer to being valid because their maximal valid generalizations have
more interpreted nodes. This requirement is expressed by the following criterion.

Criterion 3 (Error rating criterion) Given two erroneous partial instances
t1 and t2 of the same input AST t, the error for t1 is less likely than the error in
t2 (notation: t1 E t2) iff there exists a valid generalization of t2 whose domain
is smaller than the domain of all valid generalizations of t1. Formally:

t1 E t2 ⇐⇒
(
∃t′2 � t2 : R(t′2) = 3∧
∀t′1 � t1 : R(t′1) = 3 =⇒ |dom(t′1)| ≥ |dom(t′2)|

)
We can also express the rating of an AST by means of a natural number

using the following rating function.

Definition 3 (Rating function). The rating of an AST t (notation: %(t)) is
defined as the smallest cardinality of the domains of all its valid generalizations.
Formally:

%(t) , min
t′�t∧R(t′)=3

|dom(t′)|

According to this definition, the lower the rating, the more likely an AST is to
be what the user originally intended. In particular, a valid unambiguous AST
receives a rating of 0.

Lemma 5. For all t1, t2, t1 E t2 iff %(t1) ≥ %(t2).

Proof.
=⇒: By the definition of likelihood according to Criterion 3, there exists a

valid generalization t′2 of t2 such that for all valid generalizations t′1 of
t1, |dom(t′1)| ≥ |dom(t′2)|; on the other hand, the definition of % implies
that %(t1) = |dom(t′′1)| for some t′′1 . By taking t′1 = t′′1 , we have %(t1) =
|dom(t′′1)| ≥ |dom(t′2)|, and by the definition of %, |dom(t′2)| ≥ %(t2). Then
the thesis holds by transitivity of ≥.

⇐=: By the definition of %, let t′2 be a valid generalization of t2 such that
|dom(t′2)| = %(t2). Then, again by definition of %, we know that for all valid
generalizations t′1 of t1, |dom(t′1)| ≥ %(t1); then combining the hypothesis
we get |dom(t′1)| ≥ |dom(t′2)|; by the definition of likelihood, this yields the
thesis.

Corollary 1. E is a total order relation.

Proof. A consequence of ≥ being a total order relation, by means of Lemma 5.



The rating of an AST provides a formal, yet very natural way of assessing the
significance of an interpretation, even when it is not valid. Anyway, the definition
we gave does not provide an immediate method for computing the rating of
an AST: enumerating the generalizations of a given AST until a valid one is
found could be computationally expensive. Luckily, it is possible to generalize
the efficient disambiguation algorithm so that it returns errors sorted depending
on their rating.

procedure disambiguate and rate(t)
begin

Σ ← {t}3;

if Σ 6= ∅ then Ω ← [] else Ω ← [{t}7];
while (Σ 6= ∅ ∧ next(Σ) 6= 7)

begin
n ← next(Σ);
∆ ← {u[n 7→ 〈u(n), d〉]|u ∈ Σ, d ∈ Du(n)};
Σ ← ∆3;

if ∆7 6= ∅ then Ω ← ∆7 :: Ω;

end
return Σ,Ω

end

It is easy to show that the Σ and Ω returned by disambiguate and rate

contain exactly the same ASTs as those returned by disambiguate, thus the
soundness of this algorithm descends from that of the other one. The whole
difference between the two lies not in the content of Ω, but in its structure. First
it is not a set anymore, but a list of sets; each element in the list, which we will
call error frame, is obtained from the failing interpretations in a certain ∆i: thus
all the failing interpretations have the same domain, and are failing after the
instantiation of the same node. This allows us to prove the following theorem.

Theorem 3. The list Ω returned by disambiguate_and_rate is sorted by de-
creasing likelihood, that is, if Ω = [ω1, ω2, . . . , ωm], then for all ti ∈ ωi and
tj ∈ ωj where i ≤ j, tj E ti.

Proof. It is easy to prove that Ω = [∆7
k1
, ∆7

k2
, . . . ,∆7

km
], such that ki > kj iff

i < j. Therefore, we will prove that if i < j, then ti ∈ ∆7
ki

and tj ∈ ∆7
kj

are such that tj E ti. We know from the definition of the algorithm that for
all h, each t′ ∈ ∆h is obtained from some AST t′′ in Σh−1 by instantiating
a single ambiguous node, and that each AST in Σh−1 is valid. This implies
%(ti) = |dom(ti)| + 1 and %(tj) = |dom(tj)| + 1. By Lemma 2, we prove that
|dom(ti)| = |dom(t)| − ki and |dom(tj)| = |dom(t)| − kj ; since ki > kj , we prove
that %(tj) ≥ %(ti) and by Lemma 5, tj E ti.

We still have to decide whether we should prefer, as the implementation
of next, an in-order visit or a level-order visit. The issue cannot be addressed
exclusively on the basis of efficiency, since it is easy to show ASTs on which the



former choice outperforms the latter, and vice-versa. However our tests indicate
that our algorithm behaves better when employed with a level-order visit, in
the sense that the error ordering produced is closer to the expected one. This
is probably due to the fact that the interpretations of node occurrences located
nearer to the leaves (and consequently the related error messages) tend to be
more significant from the user point of view than those of nodes located nearer
to the root of the AST. An in-order visit, on the other hand, alternates deep
and shallow node occurrences and should therefore be avoided.

6 Error reporting

An attractive option for reporting disambiguation errors is to let the user dis-
ambiguate manually individual error locations by means of a point-and-click
interface, until the amount of disambiguation errors and their quality is judged
to be satisfying. Our original intention was to implement such an interface; how-
ever our experience as users of interactive theorem provers tells us that the
user is frequently incapable of guessing where disambiguation went wrong. The
reason is that the combination of overloading with other advanced features of
theorem provers, especially dependent types and coercive subtyping, make the
disambiguation process quite intricate from a human perspective. Since the user
is reviewing errors precisely for the purpose of understanding what went wrong,
it is highly likely that a single interaction at a random error location with a
point-and-click interface will not be clarifying at all, leading to frustration.

Our rating algorithm was designed having in mind that in this quite unusual
case, the system knows better than the user which errors are the best candidates
to being genuine, thanks to the rating criterion we proposed. We will employ it
to design a user interface abiding by the following requirements:

– errors should be grouped according to their location;
– users should see those errors that are more meaningful first;
– the number of errors shown at the same time should be manageable.

Classification of spurious errors in the style of Section 4 only partially respects
these requirements: in particular, errors cathegorized as non-spurious respect the
requirements, but the other ones do not. As we saw in Example 1, some errors
that are morally non-spurious may be cathegorized as spurious too, meaning
they will be intermingled with maybe dozens of uninteresting errors coming
from mixed locations.

On the other hand, the ωi sets in the list Ω returned by our algorithm seem
to be good candidates for the use in an interface satisfying the aforementioned
requirements. All the errors in the same set were produced at the same location in
the AST, thus satisfying the first requirement; the ordering of the list Ω asserted
by Theorem 3 provides a good basis for respecting the second requirement;
finally, partitioning the errors in possibly more than just two sets (spurious
and non-spurious) guarantees that our algorithm will perform better also with
respect to the last requirement.



Each frame ωi is obtained by interpreting one ambiguous node occurrence of
all ASTs in Σ in all possible ways, filtering by means of R and keeping only the
invalid instances. This has two consequences:

(a) not all interpretations possible for the node may be present in the frame,
because some of them may only be shown to be invalid after the AST is
instantiated further;

(b) some interpretations for the node may yield more than one invalid AST (in
particular, up to one for each AST in Σ).

Given an interpretation for the node occurrence being considered in ωi, we call
the subset of ASTs instantiated with that interpretation a slice of ωi. All the
ASTs in the same slice have the same interpretation for the last node considered
occurrence, but differ in the interpretation of at least another node.

(a)

(b) (c)

Fig. 1. Error reporting interface.

We propose a user interface composed of two panes. The first pane, called
interpretation pane (Figure 1(b)), shows, for a given frame, a list of the inter-
pretations of the node occurrence being considered yielding a disambiguation
error; we use highlighting directly in the user input (Figure 1(a)) to show the
node currently being considered. After choosing an interpretation in the inter-
pretation pane, we are sent to an error list pane (Figure 1(c)), reporting the list
of all the errors associated with that choice (i.e. a slice of the frame).

The activity diagram in Figure 2 shows the intended user interaction with
this interface. The user will initially be shown a list of interpretations from the
frame ω1 (which is the most likely to contain meaningful errors): if the user
intended the current node to be associated to one of those interpretations, he
will choose it and immediately view the list of related errors; otherwise, he will
use the None of the above button to switch the view to the following frame
and iterate the procedure. After viewing the error list, the user can either be
satisfied with the errors shown (when at least one of them explains what went
wrong), or decide to go back to the interpretation pane to try selecting a different
interpretation or inspecting another frame.

Example 2. Consider again the AST for the expression

(α+ β) + (α+ γ) = (x + y) + (x + z)



Interpretation pane

Error list pane

Fig. 2. User interaction with the error reporting interface.

from Example 1, using for the variables the same types as we used in that
example. After using the disambiguate and rate algorithm with a level-order
traversal of the AST, disambiguation will fail and the user interface will highlight
a symbol in the original expression:

(α+ β) + (α+ γ) = (x+y) + (x + z)

Among the two possibilities, in the interpretation pane we choose “vector plus”.
The interface returns a single error:

• the term x +plusV y has type vector but is here used with type scalar.

We decide that the error is not informative to us: something went wrong in a
different part of the AST, therefore we switch to the next error frame.

(α+ β) + (α+γ) = (x + y) + (x + z)

This time, the interpretation pane only shows the choice “vector plus”, which is
not the intended one. We switch again to the next error frame:

(α+β) + (α+ γ) = (x + y) + (x + z)

After choosing the interpretation “scalar plus”, the error list pane will show us
the error

• the term α+plusR β has type scalar but is here used with type vector.



Now we realize that the expression we intended to write was

f(α+ β) + f(α+ γ) = (x + y) + (x + z)

for a given function f from scalars to vectors. As we noted in Example 1, if we
had used the spurious error classification, the error message about α+ β would
have been considered spurious, making it much more difficult to spot it.

7 Conclusions

There have been considerable research efforts devoted to improving the way type
errors are reported to the user. Most works are concerned with type systems à
la Hindley-Milner, whose type-inference algorithm has been shown to work in
a way that is substantially different from how people commonly reason about
types. Such works (among which we mention those by Jun, Michaelson, and
Trinder [6], Hage and Heeren [5], and Stuckey, Sulzmann and Wasny [11]) are
mainly interested in improving the error message that is returned to the user by
means of several heuristics. Another relevant proposal by Rittri ([8]) is devoted
to the design of an interactive interface that can help explain to the user the
source of a type error.

Both kinds of work bear some resemblance to our implementation, in the
spirit if not in the letter. Given the fact that the notion of disambiguation error
is more general than that of type error, to improve the user experience we are
urged to address a different kind of problem: how to help the user to discriminate
between genuine errors and spurious errors.

We do this by means of a new algorithm that is capable of partitioning
and sorting errors according to their significance. This constitutes a remarkable
improvement over the previous technique of spurious error detection, which is
only capable of distinguishing two degrees of significance. In addition to this,
we also believe that our approach is based on a more understandable principle,
which does not involve implementation details such as the order in which nodes
in an AST are visited.

Even though the two approaches stem from different analyses of the problem,
the solutions have more in common than expected: it can easily be shown that,
when an in-order traversal is chosen for the disambiguate and rate algorithm,
the error list returned by it is structured in such a way that the topmost frame
contains the genuine errors and the rest of the list contains the spurious ones
(according to the draconian criterion). In this sense, the rating of disambiguation
errors is a refinement of the discrimination of spurious errors.

We kept our discussion considerably abstract, making only a few weak and
plausible assumptions on the structure of ASTs and on the existence of a validity
test R; this allows our algorithm and interface to be used in a wide range of
applications, including of course interactive theorem provers. In particular, in
our implementation of the disambiguation algorithm in Matita, R operates by
first translating the input AST to a term in the foundational language of the
system – a variant of the Calculus of (Co)Inductive Constructions extended with



metavariables in the style of [4, 7] – in such a way that ambiguous nodes and their
descendants are replaced by fresh metavariables (this ensures that Property 1 of
Section 3 holds). The obtained term is then fed to the refinement facility of the
system ([2]) for a typability check.

Our final remarks are about the user experience. The new disambiguation
infrastructure has been developed recently as part of the web application version
of Matita [1]. Our impression is that it provides a marked improvement over the
past, especially because the interface is much less invasive. Due to this change
being so new, there could still be room for improvement and we are committed
to considering opinions and suggestions coming from the users of the system.
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7. C. Muñoz. A Calculus of Substitutions for Incomplete-Proof Representation in
Type Theory. PhD thesis, INRIA, November 1997.

8. M. Rittri. Finding the source of type errors interactively. Technical report, De-
partment of Computer Science, Chalmers University of Technology, Sweden, 1993.

9. C. Sacerdoti Coen and S. Zacchiroli. Efficient ambiguous parsing of mathematical
formulae. In Proceedings of MKM 2004, volume 3119 of LNCS, pages 347–362.
Springer-Verlag, 2004.

10. C. Sacerdoti Coen and S. Zacchiroli. Spurious disambiguation errors and how to
get rid of them. Journal of Mathematics in Computer Science, special issue on
MKM, 2:355–378, 2008.

11. P. J. Stuckey, M. Sulzmann, and J. Wazny. Improving type error diagnosis. In
Proceedings of 2004 ACM SIGPLAN Haskell workshop, Haskell ’04, pages 80–91,
New York, NY, USA, 2004. ACM.

12. M. Wenzel. Type classes and overloading in higher-order logic. In TPHOLs, pages
307–322, 1997.

13. F. Wiedijk. The seventeen provers of the world. LNAI, 3600, 2006.


