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Abstract This paper is a report about the use of Matita, an interactive theorem
prover under development at the University of Bologna, for the solution of the
POPLmark Challenge, part 1a. We provide three different formalizations, including
two direct solutions using pure de Bruijn and locally nameless encodings of bound
variables, and a formalization using named variables, obtained by means of a sound
translation to the locally nameless encoding. According to this experience, we also
discuss some of the proof principles used in our solutions, which have led to the
development of a generalized inversion tactic for Matita.
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1 Introduction

The POPLmark challenge [4] is a set of “benchmarks” proposed by an international
group of researchers in order to assess the advances of theorem proving for the
verification of properties of programming languages and to promote the use and
enhancement of proof assistant technology.
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The set of problems has been chosen to capture many of the most critical issues
in formalizing the metatheory of programming languages, comprising scope, binding,
typing, and reduction. In particular, the challenge focuses on some theoretical aspects
of System F<: [6], that is a language joining a simple and tractable syntax with a
sufficiently rich and complex metatheory.

Due to its intended goals, it is natural, for any new tool aimed at the mechanization
of formal reasoning, to confront such a challenge, both to stress the tool against a
nontrivial set of problems, and to test its expressiveness and actual usability. This
paper is a report about a new solution for part 1a of the POPLmark challenge
developed using Matita, a new interactive theorem prover under development at the
Computer Science Department of the University of Bologna. Matita and its library,
including the solution to the challenge discussed here, are available for download
at http://matita.cs.unibo.it. The solution discussed in this paper is also available for
download at http://ricciott.web.cs.unibo.it.

The structure of the paper is the following: Section 2 introduces Matita; Section 3
discusses the three representations of bound and free variables which we used in our
solutions; in Section 4 we describe the proof principles and the main proofs of our
solutions; finally in Section 5 we briefly analyse the work on a quantitative basis and
draw conclusions.

2 Matita

Matita is a new interactive prover developed at the University of Bologna by a
research team coordinated by the first author. The architecture is discussed in [2].

Matita is based on the Calculus of Inductive Constructions and is partially
compatible, at proof object level, with the Coq System [9] developed at INRIA. It is
written in Ocaml and its features were purposely developed to be similar to those of
Coq, in order to provide a more modular, more maintainable and thus, in many ways,
“lighter” alternative. Since the two systems share the same foundational framework,
their kernel is also similar: one difference concerns the absence, in Matita, of a
module system; instead, Matita provides a primitive notion of explicit substitution
that can be used to mimic Coq’s section mechanism.

Some key differences lie in the refiner, that is the type inference shell surrounding
the kernel. In particular, Matita takes advantage of a strong notion of existential
variable that has no counterpart in Coq and has an extensive beneficial impact in
many architectural aspects of the system (from tactics, to i/o). At user interaction
level, Matita offers both a procedural and a declarative editing style, providing
several innovative features [3]. In particular

– the sequent-window is based on a MathML-compliant GTK-widget supporting
hyperlinks, a sophisticated bidimensional rendering, “content based” cut and
paste, in place reduction and other direct forms of interaction;

– editing is improved by means of “tinycals” [18], featuring a sort of “semantic
directed” editing mode, that allows to structure the text following the structure of

http://matita.cs.unibo.it
http://ricciott.web.cs.unibo.it
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Fig. 1 The Cic Browser
showing dependencies
between proofs and a proof in
declarative style

the dynamically generated proof, and maintaining at the same time the possibility
of a step by step execution (impossible in any other system);

– Matita offers a complex mechanism to solve notational ambiguities and over-
loading of operators, allowing the user to work with a (configurable) notation as
close as possible to the standard mathematical practice;

– the system has been conceived since the very beginning as an interface between
the user and the library of already proved results; all new theorems are indexed
using a metadata system explicitly conceived for this purpose, and several
functionalities to search and browse the repository are implemented. These
comprise a particularly useful “hint” operation, suggesting to the user a set of
theorems applicable to the current goal, and a browser (see Fig. 1) to show graphs
of dependencies among proofs and definitions and translations of procedural
proofs in declarative style.

3 Concrete Encodings of Variable Bindings

System F<: is a second order lambda calculus enriched with a subtyping relation.
Since the focus of this paper is on the formalization of proofs concerning the type
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Fig. 2 Syntax of the type sublanguage of F<:

sublanguage of F<:, we will assume knowledge of the full syntax of F<:, and only
report here the details needed to discuss the formalized syntax of types and typing
environments here. For the full syntax of F<:, see [6].

The type sublanguage of F<: (Fig. 2) consists of type variables, the type Top
(which is supertype of any type), arrow types (functions from one type to another)
and universal types (polymorphic expressions); environments may carry both typing
constraints (on term variables) and subtyping constraints (on type variables). As
for the subtyping relation, it is formalized by means of an algorithmic subtyping

Fig. 3 Well-formedness and subtyping rules of F<:
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Fig. 4 Syntax of F<: (de Bruijn): types

judgement, whose rules are directed by the syntax. Part 1a of the POPLmark
challenge asks to prove that algorithmic subtyping is reflexive and transitive. We
provide the well-formedness and subtyping rules of F<: in Fig. 3 as a reference for
the following sections.

Since F<: makes use of binders not only in terms, but also in types, we must deal
with the well-known problems of α-equivalence and avoidance of variable capture.
The most common approaches to these difficulties require to rewrite the syntax in
such a way that α-equivalent terms are syntactically equal. One way to do this is to
drop names altogether: variables can be expressed by means of indices, whose value
uniquely identifies the level at which the variable is bound; this is how de Bruijn’s
representation works (Fig. 4).

One inconvenience with de Bruijn’s representation is that when performing a
substitution, indices representing free variables in the substituted term might need to
be updated (lifted) in order to stay coherent; this can complicate both the statements
and the proofs of many lemmata. The locally nameless representation [17] is a
variation on de Bruijn’s representation, where bound variables are represented by
indices (so that α-equivalence and equality are the same) and free variables are
represented by names (eliminating the need to lift free indices in substituted terms).
The syntax is the same as the de Bruijn representation, except for the addition of free
type variables (Fig. 5).

Typing environments in the locally nameless approach are similar to their informal
counterparts. They are defined as lists of bounds, which are pairs (variable name,
type), together with a boolean value to discriminate typing bounds on term variables
from subtyping bounds on type variables.

In the de Bruijn approach, we do not have names and bounds are identified by
their position inside the environment. The dangling indices inside a bound must be
resolved in the part of the environment which precedes that bound. We will use the
notation • <: T to refer to a subtyping bound in a de Bruijn typing environment.

The last concrete approach to binding we take into account is the named variables
approach, in which names are used for both free and bound variables. Its syntax is
the closest possible to the informal presentation of Fig. 2: however we will see that
the formalization of its type system requires some additional care.

Fig. 5 Syntax of F<: (locally
nameless): types
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4 Formalization

We discuss now our formalizations of Part 1A of the POPLmark challenge. The first
part deals with the formalization of the type system using the encodings mentioned
in Section 3. In the second part, we present some of the proof principles used in the
solutions. Finally, we describe the main proofs of each formalization.

4.1 Formalization of the Type System

To restate the well-formedness and subtyping judgements in the de Bruijn encoding,
it is sufficient to remember the key differences of this encoding with respect to the
informal syntax:

– named variables are replaced by indices, with an explicit management of binding:
the dangling index #n refers to the n-th entry of its environment (from right to
left, 0 based);

– each environment entry lives in a different environment: in order to use the
content of an environment entry in a judgement, we must relocate it to the
environment of that judgement.

The first change happens to be more an advantage than an issue: it allows us not to
worry at all about names, at the same time keeping the statement of rules concerning
binding very natural, similar to informal practice. The second change, however, needs
a more careful handling, since relocation must be treated explicitly. Figure 6 shows
the de Bruijn formalization of the less trivial rules of F<:: the notations |�| and �(n)

refer respectively to the length of environment � and to the n-th entry of �; T ↑ n is
the variable lifting operation, defined as follows:

T ↑k n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

#m ↑k n = m + n if k ≤ m
#m ↑k n = m if k > m
Top ↑k n = Top

(U → V) ↑k n = (U ↑k n) → (V ↑k n)

(∀U .V) ↑k n = ∀U↑kn.(V ↑k+1 n)

T ↑ n = T ↑0 n

Fig. 6 Some rules of the de
Bruijn-style formalization of
F<:
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Lifting provides the notion of relocation we needed, since each environment entry
lives in an initial segment of the full environment.

In the locally nameless encoding, we get a more immediate treatment of envi-
ronments, since relocation of environment entries is not needed. On the contrary,
binding needs a more complex treatment, because of the use of explicit names for
free variables. In particular, the rules whose conclusions involve binders cannot be
fully structural on types: on one side, we want the type system to only deal with
locally closed types (since locally-closedness is a necessary condition for a type to
be well formed); on the other side, in a well formed type ∀U .V, V is in general not
locally closed.

Of course the solution is to replace the dangling index #0 of V with a proper free
variable X. However this kind of reasoning hides more complexity than meets the
eye. For example, we might translate the All rule to the locally nameless encoding,
obtaining easily:

� � T1 <: S1 �, X <: T1 � S2{X/#0} <: T2{X/#0}
� � ∀S1 .S2 <: ∀T1 .T2

where S2{X/#0} means “the type S2 where every occurrence of the dangling index #0
has been replaced with a free type name X”. Please notice the use of X: nowhere do
we state if the right premise should hold for a specific X or for any X. Indeed, both
alternatives are partially incorrect because, for reasons of well-formedness, we must
require that X be fresh; assuming this condition of well-formedness is met, alter-
native solutions for quantification have been proposed in literature. Universal and
existential quantification lead to formulations of the type system which we respec-
tively call strong and weak (after Urban and Pollack [21]). However, these names are
somewhat misleading since it can be proved that the two formulations are logically
equivalent: this comes from the fact that the subtyping judgement is an equivariant
predicate, i.e. one whose validity is invariant under swapping of variable names.

The concept of equivariance, which is a key point of nominal logics [16], was
exploited in the solution proposed by Leroy [14], as well as in a previous version
of our locally nameless solution. However, upon discovering that the proofs related
to equivariance accounted for about one third of our code, we decided to go for a
more standard approach.

It can be noted that, in informal logical practice, it is convenient to use the weak
(existential) variant when we want to construct a proof of � � ∀S1 .S2 <: ∀T1 .T2 (we
only need to show that the premises hold for one suitable X); on the other hand,
when reasoning backwards, the strong (universal) variant is more useful, as it pro-
vides stronger induction principles. A more complex co-finite quantification [5], pro-
viding the benefits of both the strong and the weak versions of the type system, has
been used by Charguéraud [7] for his locally nameless solution in Coq. In our locally
nameless solution, we chose to use the strong formulation of the type system, which
is sufficient to obtain very compact proofs. In fact, up to minor syntactical differences
between Coq and Matita’s tactic languages, it turns out that our solution is the most
compact among those based on the locally nameless encoding (see Section 5).

Figure 7 describes the rules for well-formedness and subtyping of universal types,
as formalized in the locally nameless encoding.

Our last formalization uses the named variables approach. Ideally, the formaliza-
tion of the type system should be very close to the informal presentation of Fig. 3.
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Fig. 7 Some rules of the locally nameless formalization of F<:

However, at some point, α-conversion must be taken into account, otherwise one
will never be able to prove a subtyping relation between two universal types binding
different variables.

There are basically two ways to deal with α-conversion:

– α-conversion can be formalized separately from the subtyping judgement (either
algorithmically or as an inductive predicate); then an additional rule for the
subtyping judgement will be provided:

� � S <: T S =α S′ T =α T ′

� � S′ <: T ′ (SA-Alpha)

– the rules WFT-All and SA-All can be rephrased in such a way that the sub-
typing judgement is directly derivable even if their bound variables are different:

� � T1 <: S1

for all Z /∈ dom(�):

⎛

⎝
(Z ∈ FV(S2) ⇒ Z = X) ⇒
(Z ∈ FV(T2) ⇒ Z = Y) ⇒
�, Z <: T1 � (Z X) · S2 <: (Z Y) · T2

⎞

⎠

� � ∀XS1 .S.2 <: ∀YT1 .T2
(SA-All)

where (X Y) · − is the name swapping operator, replacing every occurrence of
X with Y and vice-versa, not caring for binders.

We will avoid the first solution, since rules like SA-Alpha make the subtyping
judgement less algorithmic, which would contrast with the spirit of the POPLmark
challenge. However the second solution can seem a little puzzling at first. The swap-
based statement of α-conversion was originally due to Gabbay and Pitts [11] and is
very well-suited to formalization, since it simplifies the handling of name-capture.
For what concerns quantification over free variables, again we follow the schema of
universal quantification over all acceptable names Z . Z is acceptable if:

– it’s not in the domain of �;
– it does not cause variable capture inside S2 or T2: for this condition to hold,

one must verify that if Z ∈ FV(S2), then Z = X, and that if Z ∈ FV(T2), then
Z = Y.



Formal Metatheory of Programming Languages

4.2 Proof Principles

Most proofs given in the specification of the POPLmark challenge are by structural
induction on some type. However it is often the case, particularly in the locally-
nameless representation, that structural induction on types does not yield a strong
enough induction hypothesis to reason on sub-typing in the case of bounded quan-
tification: for example, to prove ∀S.T, we obtain an induction hypothesis on T,
whereas we now need an induction hypothesis on T[X/#0] for all X.

Instead of using induction on types, a very natural proof technique consists in
doing structural induction on (proof trees for) the well-formed type judgement. For
instance, induction over a proof of � � T yields exactly the four cases of a proof by
induction over T (i.e. T = Top, T = X, T = T1 → T2 and T = ∀T1 .T2); the second
induction hypothesis in the latter case is the strong one we usually need, i.e. that the
binary property P (on pairs typing context-type) we are proving holds for �, X <: T1

and T2[X/#0] for any type variable X free in both � and T2.
In our opinion, and as already noticed by others (as [17]) proofs by structural

induction on the well-formed judgement are more than a technical trick due to
an unnatural representation: they are the natural way to reason on types (and
terms) of a language. Indeed, note that structural induction on types and structural
induction on well-formed type judgements yield exactly the same hypotheses when
types are considered up to α-equivalence. Thus we may think of the proofs in the
specification of the POPLmark challenge as proofs by structural induction on well-
formed judgements.

Once decided that informal proofs by structural induction on types are to be
formalized with structural induction on the well-formed judgement for types, the
informal proof still presents a suspicious proof step. In [4], Lemma A.3 (transitivity
and narrowing), the proof is done “by induction on the structure of Q. . . . We proceed
by an inner induction on the structure of � � S <: Q, with a case analysis on the
f inal rule of this derivation and of � � Q <: T. . . . by the inner induction hypothesis
. . . ”. The question is how to formalize an “inner induction on the structure, with
a case analysis on the final rule”. Indeed, as we will see in a few moments, at
least in the Calculus of (Co)Inductive Constructions, structural induction does not
allow to perform at once case analysis on the final rule, unless we give up on using
the “inner induction hypotheses”. The proof may probably still be understood as
a proof by induction on the size of the derivation, followed by case analysis on
the last rule used. However, such a proof is more involved and more difficult to
carry out in systems that favour structural induction (such as Coq and Matita). In
the rest of this paragraph we will explain that the previous informal proof rule
can be justified by the unusual technique of induction/inversion, explaining in what
cases induction/inversion is logically justified. Although this proof principle has
been “implicitly” exploited in several solutions in Coq to the POPLmark challenge,
none of them make it explicit, resulting in an obfuscated proof whose key point
is unclear and which is difficult to port to variations of the calculus. Instead, we
have formalized the proof principle as a lemma, and we claim that an interactive
theorem prover should be able to automatically derive it from the definition of the
subtyping judgement, exactly as it is already done for the induction and inversion
principles.
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4.2.1 Induction/Inversion Principles

To informally explain induction/inversion and its use in our proof, we start recalling
the rule for induction over inductive families (which generalise abstract data types in
the Haskell community). For the sake of conciseness, in the following pages we will
write 
tn for a sequence of terms t1, . . . , tn, and 
t for a sequence of terms of unspecified
length. We also allow us to bind several variables at once, writing B 
xn : 
Tn.t for Bx1 :
T1 . . . Bxn : Tn.t (where B ∈ {λ,∀}); the meaning of the notation B
x : 
T.t is similar,
with 
x and 
T having the same, unspecified length.

An inductive family is similar to an inductive type, but it defines at once a set of
mutually-recursive inductive types differing for the values of some parameters. Syn-
tactically, the declaration of an inductive family is isomorphic to the declaration of a
judgement by giving its introduction rules. The family parameters are the arguments
of the judgement. The derivation rules are the constructors of the inductive family.
Positivity conditions must be satisfied by the derivation rules to ensure existence of
the least fixpoint solution of the set of recursive rules. When the judgement is 0-
ary (i.e. it has no parameters), we obtain a simple inductive definition. In this case,
the conclusion of all derivation rules is simply the name of the inductive type being
defined, providing no information.

Once an inductive family I is declared by giving its derivation rules (its construc-
tors), we obtain for free recursion over the inductive family as the elimination prin-
ciple corresponding to the introduction rules. We briefly recall the typing judgement
of induction principles for arbitrary inductive families: our syntax is similar to the
one given by [23] up to some minor differences.

Let I be an inductive family of arity ∀ 
xn : 
Tn.σ , where σ is a sort. Suppose that
P is a predicate of type ∀ 
xn : 
Tn.I 
xn ⇒ τ , where τ is a sort, and t has type I 
un for
some (properly typed) terms 
un. The application of the proper induction principle on
t to prove P 
un t is written

E τ
I( 
un, t, P){ 
fm}

where 
fm are the proof terms for each of the m sub-cases of the induction (one for
each of the constructors of I). The expected type for the 
fm is computed by the
following definition:

Definition 1 Let � be a CIC context, c, T, Q CIC terms. The operators �Q{�; c : T}
and �Q{�; T} are defined as follows:

�Q{�; c : I 
t} ≡ �Q{�; Q 
t c}
�Q{�; c : ∀x : T.U} ≡ ∀x : T.�Q{�, x : T; c x : U}
otherwise undef ined

�Q{∅; T} ≡ T
�Q{�, x : ∀
y : 
V.I 
t; T} ≡ �Q{�; ∀
y : 
V.Q 
t (x 
y) ⇒ T}
�Q{�, x : U; T} ≡ �Q{�; T} if the head of U is not I
otherwise undef ined
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Let kI
i of type KI

i (i = 1, . . . , m) be the constructors of type I . Then we can write
the typing rule for the induction principle as follows:

� � I : ∀ 
xn : 
Tn.σ

� � t : I 
un � � P : ∀ 
xn : 
Tn.I 
xn ⇒ τ

for all j = 1, . . . , m: � � f j : �P{∅; k j : K j}
elimination of I towards sort τ is allowed1

� � E τ
I( 
un, t, P){ 
fm} : P 
un t

(Elim)

A well-known fact about induction principles for inductive families is that they
are not well-suited for immediate applications to hypothesis in which the family
parameters are instantiated with anything different from a variable. For example,
applying the induction principle to the premise � � Top <: T we are left with five
cases to prove, disregarding the fact that only the first derivation rule could have been
applied in this case. Moreover, they are exactly the same five cases we would obtain
by changing �, Top or T to any other well-typed expression. Inversion [10, 15] is the
(derived) proof principle we need in these cases. For the previous reasons, the “inner
induction with case analysis” in the informal proof suggested in the POPLmark
challenge does not correspond to an induction principle.

Inversion allows to invert derivation rules by replacing in a hypothesis a judge-
ment with a disjunction of all the ways in which it can be obtained. Operationally, it
is sufficient to perform first order unification of the hypothesis with the conclusion of
every derivation rule and, in case of success, augment the conjunction of the premises
of the derivation rules with the equalities imposed by the unifier. For instance,
inverting an hypothesis � � X <: T1 → T2 yields

(X <: U ∈ � ∧ � � U <: T1 → T2) ∨
(� � T1 <: S1 ∧ � � S2 <: T2 ∧ X = S1 → S2)

since unification fails for all rules but Trans and Arrow.
Usually, in pen&paper proofs, it is inversion, and not induction, that is used in

the presence of judgements. The problem with inversion is that it does not provide
inductive hypotheses over the new premises. Thus, most of the time, inversion on a
judgement follows induction on the arguments of the judgement. For instance, the
specification of POPLmark proves transitivity for F<: by induction over T followed
by “induction with case analysis” (apparently similar to inversion) for � � S <: T.
Note, however, that the similarity may not be correct since inversion does not provide
access to an “inner inductive hypothesis”.

The natural question is then whether an inversion rule that also provides induction
hypotheses is admissible. We call such a rule induction/inversion.

To answer the question, we will now consider how inversion is proved in terms of
induction.

Given a predicate P : ∀ 
zn : 
Tn.I 
zn ⇒ σ and a vector of properly typed variables

xn, we define the augmented predicate

P̂[ 
xn] � λ 
zn : 
Tn.λz : I 
zn.x1 = z1 ⇒ . . . ⇒ xn = zn ⇒ P 
zn z

1The condition on allowed sort eliminations is not relevant to the subject of this paper; the interested
reader can find more information in [23] (for a general account of elimination in CIC) and [1] (for
the actual type system implemented in Matita).
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Depending on the actual arity of I , the well typedness of P̂ might depend on
the definition of =. In the general discussion of inversion and induction/inversion
principles, we will assume that = is John Major’s equality: under this assumption, P̂
is always well typed

It is possible to prove the inversion principle applying the regular induction
principle for I to the augmented predicate, as follows

Ê τ
I � λP, 
xn, x, 
fm.E τ

I( 
xn, x, P̂[ 
xn]){ 
fm} Rx1 · · ·Rxn

: ∀P : (∀ 
zn : 
Tn[ 
 ]zn.I 
zn ⇒ σ).

∀ 
xn : 
Tn[ 
 ]xn.∀x : I 
xn.∀ 
fm : 
Hm.P 
xn x

where the actual shape of the Hi is the one required by the induction principle and
Rt is the trivial reflexivity proof of t = t. We will justify this definition later in the
more general case of induction/inversion, however it is interesting to see the result in
the case of the subtyping judgement of F<:. Suppose for example we want to invert
a hypothesis H stating � � T1 → T2 <: T ′

1 → T ′
2 to prove P. Since induction over

H ignores the actual family parameters �, T1 → T2 and T ′
1 → T ′

2, we are forced
to generalise our goal to proving (� = �) ⇒ (T = T1 → T2) ⇒ (T ′ = T ′

1 → T ′
2) ⇒

P under the hypothesis � � T <: T ′, and to perform induction thereafter. We only
show two cases.

In the Top case we need to prove (� = �) ⇒ (T1 → T2 = S) ⇒ (T ′
1 → T ′

2 =
Top) ⇒ P (under two additional hypotheses), which is trivially done since the third
premise is false. This corresponds to the case where first order unification (of Top
and T ′

1 → T ′
2) fails.

In the Arrow case, we need to prove (� = �) ⇒ (T1 → T2 = S1 → S2) ⇒ (T ′
1 →

T ′
2 = S′

1 → S′
2) ⇒ P under the additional hypotheses � � S′

1 <: S1, � � S2 <: S′
2

and the respective induction hypotheses (� = �) ⇒ (T1 → T2 = S′
1) ⇒ (T ′

1 →
T ′

2 = S1) ⇒ P and (� = �) ⇒ (T1 → T2 = S2) ⇒ (T ′
1 → T ′

2 = S′
2) ⇒ P. The induc-

tion hypotheses are clearly inaccessible, since their second and third premises are
false. Thus we can simply ignore them and propagate (i.e. apply) the equalities (the
first order unifier) to reduce the thesis to P under the hypotheses � � T ′

1 <: T1 and
� � T2 <: T ′

2. Exactly what we expected from the inversion principle.
It is now clear why induction hypotheses are not provided by inversion rules: in the

general case, they are dropped because inaccessible. This is what actually happens
in the implementation of the Coq and Matita proof assistants, where inversion
principles are automatically generated following the idea just described. However,
there are situations where the induction hypothesis remains accessible. Indeed, in
the previous example the inductive hypotheses became inaccessible since the second
and third actual parameters of the inductive family in the conclusion � � S1 → S2 <:
T1 → T2 and in each premise (� � T1 <: S1 and � � S2 <: T2) of rule Arrow are
different. On the other hand, since � remains � in the premises of the rule, the
inductive hypotheses were guarded by a satisfiable premise � = � which is trivially
satisfied.

We can generalise the previous observation to obtain the following improved
induction rule: if a family parameter is globally constant, i.e. it remains the same
in each recursive occurrence of the inductive family in its derivation rules, then the
family parameter is not quantified in each premise of the induction principle, but
it occurs instantiated with the value of the actual parameter in the hypothesis the



Formal Metatheory of Programming Languages

principle is applied to. This is indeed the case for the induction principles of the Coq
and Matita theorem provers.2

Moreover, in some proofs we need equational hypotheses only for a subset of the
parameters of the type being inverted: in this case, we can employ a simpler, “partial”
inversion principle. We will now make this notion more formal.

Definition 2 (Partial Inversion) Let I be an inductive family with arity ∀ 
zn : 
Tn.σ

and constructors ki : Ki, i = 1, . . . , m. Let P be a predicate of type ∀ 
zn : 
Tn.I 
zn ⇒ τ .
For all subsets S = {s1, . . . , s|S|} of the indices 1, . . . , n, assuming that x1, . . . , xn are
properly typed variables, we define PS [ 
xn] as the predicate P partially augmented
over S :

PS [ 
xn] � λ 
zn : 
Tn.λz : I 
zn.xs1 = zs1 ⇒ . . . ⇒ xs|S| = zs|S| ⇒ P 
zn z

The we define the partial inversion principle over S as follows

E τ
I,S � λP : (∀ 
xn : 
Tn.I 
xn ⇒ τ).

λ 
xn : 
Tn.λx : I 
xn.

λ f1 : �PS [ 
xn]{∅; k1 : K1}.
· · ·
λ fm : �PS [ 
xn]{∅; km : Km}.
E τ
I( 
xn, x, PS [ 
xn]){ 
fm} Rxs1

· · ·Rxs|S|
: ∀P : (∀ 
xn : 
Tn.I 
xn ⇒ τ).

∀ 
xn : 
Tn.∀x : I 
xn.

�PS [ 
xn]{∅; k1 : K1} ⇒
· · ·
�PS [ 
xn]{∅; km : Km} ⇒
P 
xn x

As we were saying, a partial inversion principle is similar to its full counterpart,
except that each subcase fi is provided with an equational hypothesis stating that
the family parameter of index j of the inverted term is equal to the corresponding
paremeter in the target type of ki only if j in the set S . This makes partial inversion
look like a kind of weak inversion. Another difference concerns the induction
hypotheses: the induction hypotheses in a partial inversion principle are guarded
by a smaller number of equational premises. We will now see that this peculiarity
is sufficient, in some cases, to keep induction hypotheses accessible, thanks to the
notion of locally constant parameter. We call such partial inversion principles with
accessible induction hypotheses induction/inversion principles.

Definition 3 (Locally Constant Parameters) Consider an inductive family construc-
tor k of type

∀ 
xn : 
Tn.I 
tm

2This observation is actually internalised in the meta-theory of the Calculus of (Co)Inductive
Constructions, that allows global universal quantifications for inductive families to simplify the
implementation and to have more liberal type-checking rules.
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and let Ti be the type of a recursive argument of the constructor, in the form

∀
a.I 
um

We say that the j-th parameter is locally constant in the premise Ti of the constructor
k if and only if t j ≡ u j, i.e. the actual value of the j-th parameter in that premise and
that in the conclusion of the constructor coincide.

Notice that the above definition implies FV(u j) ∩ 
a = ∅, since t j is not in the scope
of the bound variables 
a.

Theorem 1 (Induction/Inversion Principles) Given an inductive family def ining
some derivation rules, consider a partial inversion principle over some subset S of
its parameters: for each derivation rule, the principle provides accessible induction hy-
potheses corresponding to those recursive premises whose locally constant parameters
are a superset of S .

Proof Consider an induction hypothesis, which must be in the form

IH � ∀
a.xs1 = us1 ⇒ · · · ⇒ xs|S| = us|S| ⇒ P 
un v

Assuming that the parameters in S are locally constant in the premise that gave rise
to the induction hypothesis above, we must have FV(usi) ∩ 
a = ∅ for all i, and the
goal must be

xs1 = u′
s1

⇒ · · · ⇒ xs|S| = u′
s|S| ⇒ P 
u′

n v′.

such that for all i ∈ S , ui = u′
i. Then we can introduce from the goal the new

hypotheses 
e|S| and feed them to IH, obtaining

IH′ � λ
a.IH 
a 
e|S| : ∀
a.P 
un v

whose shape is the same of a regular, accessible induction hypothesis. ��

As an example, which we have used in our solution to the POPLmark challenge,
we show the induction/inversion principle for the sub-typing judgement � � S <: T
(as defined in Fig. 3) where we choose S = {�, T} (i.e. the typing context and the
second type). The choice is driven by the Trans rule where � and T are locally
constant parameters, whereas the second argument is not (being U in the premise,
and X in the conclusion). Indeed, note that we get an almost-standard inversion
principle were we have traded hypotheses on L with the induction hypothesis in the
Trans case.

Theorem 2 ({�, T}-Induction/Inversion for � � S <: T) Let P be a ternary predicate
over triples (�, L, R). For all �, L, R we have � � L <: R implies P(�, L, R)

provided that

Top ∀�, S. � � � ⇒ � � S ⇒ (� = �) ⇒ (R = Top) ⇒ P(�, S,Top)

Refl ∀�, X. � � � ⇒ X ∈ dom(�) ⇒ (� = �) ⇒ (R = X) ⇒ P(�, X, X)

Trans ∀�, X, U, T, X <: U ∈ � ⇒ � � U <: T ⇒ P(�, U, T) ⇒ (� = �) ⇒
(R = T) ⇒ P(�, X, T)
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Arrow ∀�, S1, S2, T1, T2. � � T1 <: S1 ⇒ � � S2 <: T2 ⇒ (� = �) ⇒ (R = T1 →
T2) ⇒ P(�, S1 → S2, T1 → T2)

All ∀�, S1, S2, T1, T2. � � T1 <: S1 ⇒ (∀X, X �∈ dom(�) ⇒ �, X <: T1 �
S2[X/#0] <: T2[X/#0]) ⇒ (� = �) ⇒ (R = ∀T1 .T2) ⇒ P(�,∀S1 .S2, ∀T1 .T2)

It is now clear that this induction/inversion lemma is exactly what we need to
justify the informal proof, since it allows to use the “inner hypothesis” (in the
Trans case), but also to (partially) perform “case analysis on the final rule of the
derivation”. What is surprising at first is that such a proof principle, that seems quite
ad-hoc in the informal proof, is actually a general proof principle. Indeed, we want
to note some additional facts.

The first one is that these induction/inversion rules can be automatically generated
from the derivation rules of the judgement and, as well as the standard induction
and inversion rules, are fully determined once the judgement is inductively defined.
On the other hand, when the judgement has n family parameters, we can generate
2n different induction/inversion principles. Indeed, standard induction and standard
inversion corresponds respectively to the empty and full sets of family parameters.
A first observation to reduce the number of principles to generate is that a set
of induction/inversion principles makes sense only if its elements provide different
induction hypotheses. In turn, this depends on the variety of locally constant para-
meters in the rules. For instance, in the case of our sub-typing judgement, only three
induction/inversion principles have to be considered: standard induction, standard
inversion and {�, T}-induction/inversion. Even if a large number of principles are
worth generating, we can expect the proof assistant to dynamically generate them
when needed.

The second fact is that, as far as we know, the conditions for induction/inversion
principles have never been characterised before. However, we have detected them in
other proofs about the meta-theory of programming languages, such as the ones on
LambdaDelta by F. Guidi [12]. We claim that better knowledge on them could easily
result in shorter and deeper proofs, as the ones we present here.

Finally, we want to remark that while the notion of “locally constant” parameters
we used for this formalization is based on syntatical equality, induction/inversion
extends to the case of propositional equality. The only point in restricting to syn-
tactical equality is that it can be decided by the theorem prover, while propositional
equality is undecidable. Also, notice that what is called, following the terminology
used in Coq, dependent inversion (i.e. inversion used to prove predicates depending
on the term being inverted, rather than just on the parameters of its inductive
type) can never be extended to induction/inversion, since the term being inverted is
cannot be constant (unless the inductive definition is in Prop and proof-irrelevance is
assumed). More precisely, dependent inversion must provide an additional equation
for the term being inverted, therefore the induction hypothesis will be guarded by a
similar equation. An ongoing proof by dependent inversion would show a goal in the
following shape

H : I
x : I

IH : H = x ⇒ P x
H = c x ⇒ P (c x)



A. Asperti et al.

where c is a constructor having type I ⇒ I . Clearly, the induction hypothesis IH is
not accessible, since inductive types are acyclic, meaning that x = c x cannot hold.

The generation of induction/inversion principles is performed by Matita on de-
mand, using the inverter command.

4.3 Proofs

In this section we will discuss briefly the main proofs of the solutions to POPLmark
part 1a that we have formalized in Matita, based on the proof techniques of
Section 4.2. The formal proofs in Matita can be retrieved from the Web pages of
the Matita proof assistant. We will begin with the locally nameless solution, which is
in some sense more basic than the other two.

4.3.1 Locally Nameless

The first property we must show is the reflexivity of subtyping.

Theorem 3 (Reflexivity (Locally Nameless Encoding)) Let � be a typing environ-
ment, and T a type; if � is well-formed and T is well-formed in �, then � � T <: T.

Proof Once it has been proved that, for all � and T, � � T implies FV(T) ⊆ dom(�),
the proof is trivial by induction on the derivation of � � T. Matita is able to prove
almost every case of the induction by means of standard automation. ��

The following theorem asserts a stronger weakening property than the one
described in the specifications: here weakening on well formed environments is
defined as set inclusion, instead of concatenation of two disjoint environments. In
this way we are exempted from proving the less tractable lemma on permutations.

Theorem 4 (Weakening (Locally Nameless Encoding))

1. Let � be a typing environment, T a type. If � � T, then for all environments �

such that � ⊆ �, we get � � T.
2. Let � be a typing environment, T, U types. If � � T <: U, for all well-formed

environments � such that � ⊆ �, we get � � T <: U.

Proof The first point follows easily from a straightforward induction on the deriva-
tion of � � T. The second point follows from an induction on the derivation of
� � T <: U (the proposition proved in part (i) is used in the Top case). Once again
standard automation turns out to be very useful. ��

Unlike the specifications, we decided to prove narrowing and transitivity sep-
arately. Our statements are also slightly stronger than the ones provided in the
specifications. This is ultimately due to the locally nameless encoding: in fact,
since the encoding of the All rule is not fully structural with respect to the types
mentioned in it, the induction on the structure of a type, used in the informal proof,
is not sufficient to prove narrowing and transitivity in our setting. Instead, we will use
an induction on the derivation of some judgements.
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Theorem 5 (Narrowing (Locally Nameless Encoding)) For all typing environments
�,�′, for all types U, P, M, N and for all variables X, if

1. �′ � P <: U
2. � � M <: N
3. for all �′′, T if �′, �′′ � U <: T then �′, �′′ � P <: T

then forall � s.t. � = �′, X <: U, �, the judgement �′, X <: P, � � M <: N holds.

Proof We proceed by induction on the derivation of � � M <: N. The interesting
case is SA-Trans-TVar: in this case, M = Y, where Y is a type variable. If X = Y,
we prove the statement by means of rule SA-Trans-TVar. Since X <: P ∈ (�′, X <:
P,�) (trivially), we only need to prove �′, X <: P, � � P <: N: this is obtained by
means of hypothesis 3 (�′, X <: P,� � U <: N holds by induction hypothesis). If
X �= Y, the goal is obtained trivially by induction hypothesis. ��

Last, we turn to proving the main property, i.e. transitivity of subtyping. Again,
we use a slightly different statement from the specifications, but the proof follows
closely the suggested structure.

Theorem 6 (Transitivity (Locally Nameless Encoding)) Let T a type, �′ a typing
environment such that �′ � T. For any typing environment � such that dom(�′) ⊆
dom(�), and for all types R, U, if � � R <: T and � � T <: U then � � R <: U.

Proof We proceed by induction on the derivation of �′ � T, followed by {�, T}-
induction/inversion on � � R <: T. The interesting case is WFT-All: in this case,
T = ∀T ′ .T ′′ and, by applying the unifier provided by the principle, only two cases are
possible:

– R = X (where X is a type variable) and X <: V ∈ � (for some type V). The
thesis follows from the induction/inversion hypothesis, by means of rule Trans.

– R = ∀R′ .R′′. In this case, by inversion on � � ∀T ′ .T ′′ <: U we show U is either
Top or ∀U ′ .U ′′. In the first case, showing that � � ∀R′ .R′′ <: Top is trivial. In
the second case, the difficult part is to show that, for all X /∈ dom(�), �, X <:
U ′ � R′′{X/#0} <: U ′′{X/#0}. By the induction hypothesis, we only need to prove
�, X <: U ′ � R′′{X/#0} <: T ′′{X/#0} and �, X <: U ′ � T ′′{X/#0} <: U ′′{X/#0}: these
follow from the induction/inversion hypothesis, together with narrowing. Please
notice that the hypothesis dom(�′) ⊆ dom(�), here, is essential, since otherwise
the typing environments in the induction hypothesis and in the goal would not
match. ��

When proving reflexivity and transitivity, our formalization of the All rule
requires to prove that some judgement holds for any fresh variable X. As we pointed
out in Section 4.1, since the subtyping judgement is equivariant, it is sufficient that
it hold for one fresh X: following this intuition, Leroy, in his solution to the chal-
lenge, decided to prove this alternate “for one” rule. Apparently, this should have
simplified the proofs of reflexivity and transitivity, thus in a previous version of our
solution we decided to follow closely his approach; however, proving the “for one”
rule required a great effort (approximately 500 lines of code out of 1,500). Moreover,
proofs can be completed quite easily even without the “for one” rule. The most
difficult case is probably in the reflexivity: we must prove that � � ∀T .U <: ∀T .U ,
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knowing (by hypothesis) that ∀T .U is well-formed in �, and (by induction hypothesis)
that for any X /∈ dom(�) ∪ FV(U), �, X <: T � U[X/#0] <: U[X/#0] holds; now if
we apply the “for one” version of the rule, it’s sufficient to prove that for some
Y /∈ dom(�), the judgement �, Y <: T � U[Y/#0] <: U[Y/#0] holds – then we choose
Y to be fresh both in � and T, and the thesis follows trivially from the induction
hypothesis; using the original All rule is only apparently more difficult: we need to
prove the same judgement for any Y /∈ dom(�) but, since ∀T.U is well-formed in �,
one can easily prove that no variables outside � can be free in U , thus the induction
hypothesis is sufficient even in this case.

4.3.2 De Bruijn Nameless Encoding

While the concern about readability of terms containing nameless dummies, which is
also brought against locally nameless solutions, is debatable, the fact that de Bruijn
open terms must be explicitly lifted when the environment is changed, is a serious
matter. The statement of theorems must be carefully tuned and while we do not
feel that the readability of the proofs is compromised, the ease of formalization is
impaired to some extent. Still, formalization of the properties of dangling dummies
has some interest per se, and theorem provers provide all the tools to carry out their
proofs.

The proof of reflexivity in the de Bruijn encoding is even easier than in the locally
nameless encoding (exactly three proof steps in Matita); weakening, however, is
the typical example of a theorem whose statement must be somewhat reworked
in the de Bruijn encoding. The relation � ⊆ � we had used in the locally nameless
version, denoting that � is extended by �, possibly with some entries permuted, is
not meaningful for de Bruijn environments: while the entries of a locally nameless
environment can be permuted consistently without updating the free names, in a de
Bruijn environment the dangling dummies must be also permuted explicitly.

We are tempted to state weakening by means of environment concatenation and
lifting:

For all environments �, �′ and types S, T, if � � S <: T and �,�′ � �, then
�,�′ � S ↑ |�′| <: T ↑ |�′|.
The statement is correct but its proof (as noted in the POPLmark specifi-

cations [4]) requires a permutation lemma which is precisely what we wanted to avoid
in the first place.

The best we can do is to prove a strong version of weakening, implying the
permutation lemma, just like we did in the locally nameless formalization. However,
the notion of environment inclusion needs to be significantly refined. On the other
hand, lifting is not sufficient to deal with permutations, and a generalization is
needed.

Definition 4 The map application of a function f : N → N on F<: types is defined as
follows:

f · T =

⎧
⎪⎪⎨

⎪⎪⎩

f · n = f (n)

f · Top = Top
f · (T → U) = f · T → f · U
f · (∀T .U) = ∀ f ·T .( f̂ · U)
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where f̂ is defined as:

f̂ (x) =
{

0 if x = 0
f (y) + 1 if x = y + 1

Definition 5 A function f : N → N is an environment extension map from � to �

(notation: � ⊆ f �) if and only if it is injective and for all n < |�|, f (n) < |�| and
f · (�(n) ↑ n + 1) = �( f (n)) ↑ f (n) + 1.

In simple terms, an environment extension map is a more explicit version of the ⊆
relation used in the locally nameless formalization. Its definition can be paraphrased
by saying that for every n, the n-th entry of �, relocated at the top level (by lifting)
and then mapped to the environment � (by means of f ) must be equal to the f (n)-th
entry of �, relocated to the top level (again by lifting).

We can then prove weakening in the following form.

Theorem 7 (Weakening (de Bruijn Encoding)) For all environments �,�, if for some
f , � ⊆ f �, � � S <: T and � � �, then � � f · S <: f · T.

While the proof of the above statement is similar to its locally nameless counter-
part, automation turns out to be a bit less effective.

It can be noted that lifting and environment extension maps have an interesting
relation. Let ⇑m

k : N → N be the family functions defined as follows:

⇑m
k (n) =

{
m + n if k ≤ n
n else

We show that for all types T, T ↑k m =⇑m
k ·T. As a corollary, for all environments

�,�, � ⊆⇑|�|
0

�,�: therefore the version of weakening involving environment exten-
sion maps also implies the previous statement with concatenation of environments
and lifting.

Narrowing and transitivity are then proved separately, following the same strat-
egy, if not the letter, of the locally nameless proofs.

Theorem 8 (Narrowing (de Bruijn Encoding)) For all typing environments �,�′ and
for all types U, P, M, N, if

1. �′ � P <: U
2. � � M <: N
3. for all �′′, S, T, if �′, �′′ � S <: (U ↑ |�′′|) and �′, �′′ � (U ↑ |�′′|) <: T imply

�′, �′′ � S <: T

then for all � s.t. � = �′, • <: U, �, the judgement �′, • <: P,� � M <: N holds.

Theorem 9 (Transitivity (de Bruijn Encoding)) Let S, T, U be types, � a typing
environment, f a function from naturals to naturals. If � � S <: f · T and � � f ·
T <: U, then � � S <: U.

Somewhat surprisingly, the above statement of transitivity does not require f
to be an environment extension map: it is sufficient for f to be a function from
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naturals to naturals. The particular statement of the theorem is needed in order to
get an induction hypothesis which is sufficiently strong to imply the weak transitivity
requirement of the previous narrowing theorem. The proof also exploits the {�, T}-
induction/inversion principle, similarly to the corresponding proof in the locally
nameless encoding.

The usual statements of transitivity and narrowing are then obtained as coro-
llaries.

4.3.3 Named Variables

Our solution using named variables follows a radically different approach from the
other two: instead of proving the transitivity of subtyping directly on types with
named variables, we decided to provide a translation of types with named variables to
locally nameless types. This induces a translation of environments and, consequently,
a translation of whole subtyping judgements: if we can prove that the subtyping
judgement on types with named variables is adequate and faithful with respect to the
corresponding judgement on locally nameless types, we can obtain the transitivity on
types with named variables as a corollary, from the transitivity on locally nameless
types.

This kind of formalization, similar to transformations performed by actual com-
pilers, has an interest in itself and hides some difficulties: therefore it seemed to be a
good companion to the problems of the POPLmark challenge.

First, we need to define an algorithm providing the intended encoding of types
with named variables into locally nameless types.

�T�	 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�Top�	 = Top
�X�	 = #n if n = posn(X, 	)

�X�	 = X if X /∈ 	

�T ′ → T ′′�	 = �T ′�	 → �T ′′�	

�∀XT ′ .T ′′�	 = ∀�T ′�	
.�T ′′�X,	

��� =
⎧
⎨

⎩

�∅� = ∅
��′, x : T� = ��′�, x : �T�
��′, X <: T� = ��′�, X <: �T�

where 	 is a list of names used to trace non-locally bound variables. We will use the
notation |	| to indicate the length of list 	.

The encoding of a type is obtained beginning with 	 being empty and it is denoted
by �·�; the list is updated with a new variable whenever we enter the scope of a
quantifier; the encoding �X�	 is X when X /∈ 	 (meaning X is a free variable); if X ∈
	, the encoding �X�	 is #n, where n is the position of X in 	 (meaning X is a bound
variable, and the “distance” of its binder is n); the encoding of a type commutes with
all other constructs. The encoding of an environment is the same environment where
every (sub)typing bound has been replaced by its encoding.

We can also show that this translation is surjective: for every locally closed type T
in the locally nameless representation, there exists a type T ′ in the named variables
representation, such that �T ′� = T.
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The key lemmata we need to prove adequacy are the following:

Theorem 10 For all types T and lists of variables 	1,	2, if for all variables X, X ∈
	1 ⇐⇒ X ∈ 	2 and X ∈ 	1 =⇒ posn(X, 	1) = posn(X, 	2), then �T�	1

= �T�	2
.

Proof By structural induction on T. ��

Theorem 11 For all types T and variables X, Y, if X ∈ 	 and if Y ∈ FV(T) implies
Y ∈ 	, then �T�	 = �(X Y) · T�(X Y)·	.

Proof By structural induction on T. ��

Theorem 12 For all types T, lists of variables 	 and natural numbers n, if |	| ≤ n then
�T�	[U/#n] = �T�	.

Proof By structural induction on T. ��

Theorem 13 For all types T, variables X and lists of variables 	, �T�	 =
�T�	,X [X/#|	|].

Proof By structural induction on T. ��

Theorem 14 For all variables X,Y and types T, if X ∈ FV(T) ⇒ X = Y, then
�(X Y) · T� = �T�Y [X/#0].

Proof Actually, the theorem is obtained as a corollary from a stronger statement:

Given a list of variables 	, if X and Y are not in 	 and X ∈ FV(T) ⇒ X = Y,
then �(X Y) · T�	 = �T�	,Y [X/#|	|].
Our proof is by induction on the weight of T, then by case analysis again on T.

The weight of T is defined as follows:

‖T‖ =

⎧
⎪⎪⎨

⎪⎪⎩

‖X‖ = 0
‖Top‖ = 0

‖U → V‖ = max(‖U‖, ‖V‖) + 1
‖∀X <: U.V‖ = max(‖U‖, ‖V‖) + 1

If T = Z for some variable Z , consider the cases

– X = Z : by hypothesis we also know X = Y. Then we must prove:

�X�	 = �X�	,X [X/#|	|]
Since X /∈ 	, this is equivalent to

X = #|	|[X/#|	|]
which is trivial.

– X �= Z , Y = Z . We must prove:

�(X Y) · Y�	 = �Y�	,Y [X/#|	|]
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Since X /∈ 	 and Y /∈ 	, this is equivalent to

X = #|	|[X/#|	|]
which is trivial.

– X �= Z and Y �= Z . Then we must prove:

�Z�	 = �Z�	,Y [X/#|	|]
Considering the cases Z ∈ 	 or Z /∈ 	, we can conclude that the two sides are
identical.

If T = ∀ZU .V, we must prove

∀�(X Y)·U�	
.�(X Y) · V�(X Y)·Z ,	 = ∀�U�	,Y [X/#|	|].�V�Z ,	,Y [X/#|	|+1]

Since the sources are equal by induction hypothesis, its sufficient to prove that the
targets are the same:

�(X Y) · V�(X Y)·Z ,	 = �V�Z ,	,Y [X/#|	|+1]
We consider the following cases:

– Y = Z : we must prove

�(X Y) · V�(X Y)·Y,	 = �V�Y,	,Y [X/#|	|+1]
or equivalently

�(X Y) · V�(X Y)·(Y,	) = �V�Y,	,Y [X/#|	|+1]
By Theorem 10, we rewrite the right-hand side as �V�Y,	[#|	|+1/X], and by
Theorem 12 as �V�Y,	. Therefore, we only need to show that

�(X Y) · V�(X Y)·(Y,	) = �V�Y,	,Y

which is obtained by Theorem 11.
– Y �= Z and X = Z : we must prove

�(X Y) · V�(X Y)·X,	 = �V�X,	,Y [X/#|	|+1]
or equivalently

�(X Y) · V�(X Y)·(X,	) = �V�X,	,Y [X/#|	|+1]
We rewrite the right-hand side by Theorem 11, yielding the equation

�(X Y) · V�(X Y)·(X,	) = �(X Y) · V�(X Y)·(X,	),X[X/#|	|+1]
This is obtained by Theorem 13.

– Y �= Z and X �= Z : we must prove

�(X Y) · V�Z ,	 = �V�Z ,	,Y [X/#|	|+1]
This is proved by induction hypothesis. ��

We are now able to prove the adequacy theorem.
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Theorem 15 (Adequacy and Faithfulness)

1. Let � be a typing environment, T, U types in the named presentation. If � � T <:
U, then ��� � �T� <: �U�.

2. Let � be a typing environment, T, U types in the locally nameless encoding. Let
�′, T ′, U ′ such that � = ��′�, T = �T ′� and U = �U ′�. If � � T <: U, then �′ �
T ′ <: U ′.

Proof Adequacy is proved by a straightforward induction on the derivation of
� � T <: U . Almost all the cases are easy (and are proved automatically by Matita),
except for the “for all” case, requiring us to prove that

��� � ∀�S1�.�S2�X <: ∀�T1�.�T2�Y

under the following induction hypotheses

IH1 : ��� � �T1� <: �S1�
IH2 : for all Z /∈ FV(�):

(Z ∈ FV(S2) ⇒ Z = X) ⇒
(Z ∈ FV(T2) ⇒ Z = Y) ⇒
���, Z <: �T1� � �(Z X) · S2� <: �(Z Y) · T2�

By SA-All and IH1, we reduce to the problem of proving

for all W /∈ FV(�): ���, W <: �T1� � �S2�X [W/#0] <: �T2�Y [W/#0]
This follows easily from IH2 by means of Theorem 14.

The proof of faithfulness basically mirrors that of adequacy and is performed by
providing an algorithm to compute the backwards encoding of a locally closed type.

��

5 Conclusions

The POPLmark challenge proved to be a valuable test-bench for the Matita theorem
prover. During the development of the solution a few bugs and glitches have been
detected and corrected, especially concerning tactics like inversion or destruct, less
frequently used in developments of a more mathematical nature. Moreover, we have
identified a new proof principle, that we called induction/inversion and that we plan
to implement in Matita. The principle seems to have been implicitly adopted in
several solutions (see for example [7, 13]) but never made explicit before. We believe
that our proof where it is explicit is not only easier to understand, but also more
faithful to the informal proof of the POPLmark specification.

We must stress that the absence of agreed principles to evaluate solutions to the
challenge makes it difficult to draw conclusions. Just as an indication, in Table 1 we
compare the size of our solution with other solutions written in Coq (whose syntax
is the closest to Matita). Remarkably, the size of our locally nameless solution is
350 lines (slightly less than 4 kB compressed), which is the most compact among
those based on the same encoding. That is to say that, in spite of a sensibly simpler
architecture design resulting in about half of the code of Coq, the functionalities
offered by Matita and the expressiveness of its tactical language are fully comparable
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Table 1 Size comparison between solutions of the challenge in Matita (ours, in bold) and in Coq (all
others)

Author Lines GZip’ed Encoding technique

Hirschowitz & Maggesi [13] 293 2,906 de Bruijn (nested datatypes)
Ricciotti 350 3,931 locally nameless
Charguéraud [7] 465 4,058 de Bruijn
Ricciotti 576 5,382 de Bruijn
Charguéraud [7] 630 5,272 locally nameless (cofinite)
Vouillon [22] 796 6,231 de Bruijn
Chlipala [8] 923 4,729 locally nameless
Stump [20] 1,256 8,025 named variables
Leroy [14] 1,528 13,488 locally nameless
Sallinens [19] 2,045 12,384 de Bruijn

with the former. Therefore, we believe that Matita brilliantly overcame the test,
proving to be a competitive tool for the verification of properties of programming
languages and the automation of formal reasoning.

Our de Bruijn solution bears some similarities with Maggesi and Hirschowitz’s
solution based on nested datatypes [13]: in particular our notion of environment
extension map is comparable to their “relative well-formedness” predicate. Still, the
structures used by the two solutions are very different (nested abstract syntax uses
dependently typed structures and formalizes contexts as functions, while we went for
a more standard approach). For what concerns size, our de Bruijn solution has not
been tuned for compactness and is still relatively lengthy (with a size comparable
to that of the second locally nameless solution): in general, de Bruijn formalizations
have proved to be more synthetic than locally nameless ones, and we believe that
automation might help reducing its size significantly.

The solution using named variables is not comparable to the other ones, since it is
based on a completely different proof strategy. Its size amounts to 1,270 lines (9,706
bytes compressed), which confirms that handling of named variables comes at a cost.

As for the encoding issue, as already pointed out by other authors, we agree
that the locally nameless approach leads to proofs which are more readable (in
comparison with de Bruijn’s representation): this is due to the fact that we do not
have to deal with free indices. We also believe that while it may be possible to obtain
a smaller solution using pure de Bruijn’s approach, the proofs tend to become much
less linear, making the locally nameless approach still preferable.

The biggest drawback with the locally nameless approach is that typing rules which
deal with binders are required (reasoning backwards) to make indices disappear, in
such a way that they are not fully structural on the types. This means that where
the paper proof would use a straight induction on a type, we are required to use an
induction on its well-formedness derivation. For the same reasons, the cases with
binders are also the most difficult to deal with in the adequacy proof of the named
variables encoding with respect to the locally nameless encoding.
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