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Abstract11

Language-integrated query is a powerful programming construct allowing database queries and12

ordinary program code to interoperate seamlessly and safely. Language-integrated query techniques13

rely on classical results about monadic comprehension calculi, including the conservativity theorem14

for nested relational calculus. Conservativity implies that query expressions can freely use nesting15

and unnesting, yet as long as the query result type is a flat relation, these capabilities do not lead16

to an increase in expressiveness over flat relational queries. Wong showed how such queries can17

be translated to SQL via a constructive rewriting algorithm, and Cooper and others advocated18

higher-order nested relational calculi as a basis for language-integrated queries in functional languages19

such as Links and F#. However there is no published proof of the central strong normalization20

property for higher-order nested relational queries: a previous proof attempt does not deal correctly21

with rewrite rules that duplicate subterms. This paper fills the gap in the literature, explaining the22

difficulty with a previous proof attempt, and showing how to extend the >>-lifting approach of23

Lindley and Stark to accommodate duplicating rewrites. We also sketch how to extend the proof to24

a recently-indroduced calculus for heterogeneous queries mixing set and multiset semantics.25
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1 Introduction30

The nested relational calculus [2] provides a principled foundation for integrating database31

queries into programming languages. Wong’s conservativity theorem [20] generalized the32

classic flat-flat theorem [17] to show that for any nesting depth d, a query expression over flat33

input tables returning collections of depth at most d can be expressed without constructing34

intermediate results of nesting depth greater than d. In the special case d = 1, this implies35

the flat-flat theorem, namely that a nested relational query mapping flat tables to flat tables36

can be expressed equivalently using the flat relational calculus. In addition, Wong’s proof37

technique was constructive, and gave an easily-implemented terminating rewriting algorithm38

for normalizing NRC queries to equivalent flat queries; these normal forms correspond closely39

to idiomatic SQL queries and translating from the former to the latter is straightforward.40

The basic approach has been extended in a number of directions, including to allow for41

(nonrecursive) higher-order functions in queries [7], and to allow for translating queries that42

return nested results to a bounded number of flat relational queries [4].43

Normalization-based techniques are used in language-integrated query systems such as44

Kleisli [21] and Links [8], and can improve both performance and reliability of language-45

© W. Ricciotti and J. Cheney;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2361-8538
http://www.wilmer-ricciotti.net
mailto:research@wilmer-ricciotti.net
https://orcid.org/0000-0002-1307-9286
https://homepages.inf.ed.ac.uk/jcheney/
mailto:jcheney@inf.ed.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Strongly Normalizing Higher-Order Relational Queries

integrated query in F# [3]. However, most work on normalization considers homogeneous46

queries in which there is a single collection type (e.g. homogeneous sets or multisets).47

Recently, we considered a heterogeneous calculus for mixed set and bag queries [19], and48

conjectured that it too satisfies strong normalization and conservativity theorems. However,49

in attempting to extend Cooper’s proof of normalization we discovered a subtle problem,50

which makes the original proof incomplete.51

Most techniques to prove the strong normalization property for higher-order languages52

employ logical relations; among these, the Girard-Tait reducibility relation is particularly53

influential: reducibility interprets types as certain sets of strongly normalizing terms enjoying54

certain closure properties with respect to reduction, called candidates of reducibility [9]. The55

fundamental theorem then proves that every well-typed term is reducible, hence also strongly56

normalizing. In its traditional form, reducibility has a limitation that makes it difficult to57

apply it to certain calculi: the elimination form of every type is expected to be a neutral58

term or, informally, an expression that, when placed in an arbitrary evaluation context, does59

not interact with it by creating new redexes. However, certain calculi possess commuting60

conversions, i.e. reduction rules that apply to nested elimination forms: such rules usually61

arise when the elimination form for a type S is constructed by means of a term of an arbitrary62

type T , unrelated to S. In this case, we expect nested elimination forms to commute; for63

example, given terms s of type S and t of type T , an elimination context ET for terms of64

type T , and an elimination context ES for terms of type S indexed by terms of an arbitrary65

type, we could have the following commuting conversion:66

ET [ES(t)[s]] ES(ET [t])[s]67

Since in the presence of commuting conversions elimination forms are not neutral, a straight-68

forward adaptation of reducibility to such languages is precluded.69

1.1 >>-lifting and NRC λ70

Cooper’s NRCλ [6, 7] extends the simply typed lambda calculus with collection types whose71

elimination form is expressed by comprehensions
⋃

{M |x← N}, where M and N have a72

collection type, and the bound variable x can appear in M :73

Γ ` N : {S} Γ, x : S `M : {T}
Γ `

⋃
{M |x← N} : {T}

74

This comprehension destructures collections of type {S} to produce new collections in75

{T}, where T is an unrelated type: semantically, this corresponds to the union of all the76

collections M [V /x], such that V is in N . According to the standard approach, we should77

attempt to define the reducibility predicate for {S} as:78

Red{S} , {N : ∀x, T,∀M ∈ Red{T},
⋃

{M |x← N} ∈ Red{T}}79

(we use a typewriter style {·} for collections as terms of NRCλ, to distinguish them from80

metalinguistic sets {·}). Of course the definition above is circular, since it uses reducibility81

over collections to express reducibility over collections; however, this inconvenience could82

in principle be circumvented by means of impredicativity, replacing Red{T} with a suitable,83

universally quantified candidate of reducibility (an approach we used in [18] in the context84

of justification logic). Unfortunately, the arbitrary return type of comprehensions is not the85

only problem: they are also involved in commuting conversions, such as:86 ⋃
{M |x←

⋃
{N |y ← P}} 

⋃
{
⋃

{M |x← N}|y ← P} (y /∈ FV (M))87
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Because of this rule, comprehensions are not neutral terms, thus we cannot use the closure88

properties of candidates of reducibility (in particular, CR3) to prove that a collection term is89

reducible. To address this problem, Lindley and Stark proposed a revised notion of reducibility90

based on a technique they called >>-lifting [15], which involves quantification over arbitrarily91

nested, reducible elimination contexts (continuations). The technique is actually composed92

of two steps: >-lifting, used to define the set Red>T of reducible continuations of type T in93

terms of RedT , and >>-lifting proper, defining Red{T} = Red>>T in terms of Red>T . In our94

setting, we would have:95

Red>T , {K : ∀M ∈ RedT ,K[{M}] ∈ SN}96

Red>>T , {M : ∀K ∈ Red>T ,K[M ] ∈ SN}97
98

In NRCλ, however, we come across an additional problem concerning the property of99

distributivity of comprehensions over unions, represented by the following reduction rule:100 ⋃
{M ∪N |x← P} 

⋃
{M |x← P} ∪

⋃
{N |x← P}101

One can immediately see that in
⋃

{M ∪N |x← �} the reduction above duplicates the hole,102

producing a multi-hole context that is not a continuation in the Lindley-Stark sense.103

Cooper in his work attempted to reconcile continuations with duplicating reductions.104

While considering extensions to his language, we discovered that his proof of strong normal-105

ization presents a nontrivial lacuna which we could only fix by relaxing the definition of106

continuations to allow multiple holes. This problem affected both the proof of the original107

result and our attempt to extend it, and has an avalanche effect on definitions and proofs,108

yielding a more radical revision of the >>-lifting technique which is the subject of this paper.109

The contribution of this paper is to place previous work on higher-order programming for110

language-integrated query on a solid foundation. As we will show, our approach also extends to111

prove normalization for a higher-order heterogeneous collection calculus NRCλ(Set,Bag) [19]112

and we believe our proof technique can be extended further.113

1.2 Summary114

Section 2 reviews presents NRCλ and its rewrite system. Section 3 presents the refined115

approach to reducibility needed to handle rewrite rules with branching continuations. Section 4116

presents the proof of strong normalization for NRCλ. Section 5 outline the extension to a117

higher-order calculus NRCλ(Set,Bag) providing heterogeneous set and bag queries. Sections 6118

and 7 discuss related work and conclude. Some of the proofs which were omitted from the119

paper due to space constraints and are detailed in the appendix.120

2 Higher-order NRC121

NRCλ, a nested relational calculus with non-recursive higher order functions, is defined by122

the following grammar:123

types S, T ::= A | S → T | 〈
−−→
` : T 〉 | {T}

terms L,M,N ::= x | c(−→M) | 〈
−−−−→
` = M〉 | M.` | λx.M | (M N)

| ∅ | {M} | M ∪N |
⋃

{M |x← N}
| empty M | where M do N

124

Types include atomic types A,B, . . . (among which we have Booleans B), record types125

with named fields 〈
−−→
` : T 〉, collections {T}; we define relation types as those in the form126
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x : T ∈ Γ
Γ ` x : T

Σ(c) = −→An → A′ (Γ `Mi : Ai)i=1,...,n

Γ ` c(−→Mn) : A′

(Γ `Mi : Ti)i=1,...,n

Γ ` 〈
−−−−−−→
`n = Mn〉 : 〈

−−−−→
`n : Tn〉

Γ `M : 〈
−−−−→
`n : Tn〉 i ∈ {1, . . . , n}

Γ `M.`i : Ti
Γ, x : S `M : T

Γ ` λx.M : S → T

Γ `M : S → T Γ ` N : S
Γ ` (M N) : T

Γ ` ∅ : {T}
Γ `M : T

Γ ` {M} : {T}
Γ `M : {T} Γ ` N : {T}

Γ `M ∪N : {T}
Γ, x : T `M : {S} Γ ` N : {T}

Γ `
⋃

{M |x← N} : {S}

Γ `M : {T}
Γ ` empty M : B

Γ `M : B Γ ` N : {T}
Γ ` where M do N : {T}

Figure 1 Type system of NRC λ.

{〈
−−→
` : A〉}, i.e. collections of tuples of atomic types. Terms include applied constants c(−→M),127

records with named fields and record projections (〈` = M〉, M.`), various collection terms128

(empty, singleton, union, and comprehension), the emptiness test empty, and one-sided129

conditional expressions for collection types where M do N . In this definition, x ranges over130

variable names, c over constants, and ` over record field names. We will allow ourselves131

to use sequences of generators in comprehensions, which are syntactic sugar for nested132

comprehensions, e.g.:133 ⋃
{M |x← N, y ← R} ,

⋃
{
⋃

{M |y ← R}|x← N}134

The typing rules, shown in Figure 1, are largely standard, and we only mention those135

operators that are specific to our language: constants are typed according to a fixed signature136

Σ, prescribing the types of the n arguments and of the returned expression to be atomic;137

empty takes a collection and returns a Boolean indicating whether its argument is empty;138

where takes a Boolean condition and a collection and returns the second argument if the139

Boolean is true, otherwise the empty set. (Conventional two-way conditionals, at any type,140

are omitted for convenience but can be added without difficulty.)141

2.1 Reduction and normalization142

NRCλ is equipped with a rewrite system whose purpose is to convert expressions of flat143

relation type into a sublanguage isomorphic to a fragment of SQL, even when the original144

expression contains subterms whose type is not available in SQL, such as nested collections.145

The rules for this rewrite system are shown in Figure 2.146

Reduction on applied constants can happen when all of the arguments are in normal147

form, and relies on a fixed semantics J·K which assigns to each constant c of signature148

Σ(c) = −→An → A′ a function mapping sequences of values of type −→An to values of type A′.149

The rules for collections and conditionals are mostly standard. The reduction rule for the150

emptiness test is triggered when the argument M is not of relation type (but, for instance,151

of nested collection type) and employs comprehension to generate a (trivial) relation that is152

empty if and only if M is.153
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(λx.M) N  M [N/x] 〈. . . , ` = M, . . .〉.` M c(−→V ) JcK (−→V )⋃
{∅|x←M} ∅

⋃
{M |x← ∅} ∅

⋃
{M |x← {N}} M [N/x]⋃

{M ∪N |x← R}  
⋃

{M |x← R} ∪
⋃

{N |x← R}⋃
{M |x← N ∪R}  

⋃
{M |x← N} ∪

⋃
{M |x← R}⋃

{M |y ←
⋃

{R|x← N}}  
⋃

{M |x← N, y ← R} (if x /∈ FV(M))⋃
{M |x← where N do R}  

⋃
{where N do M |x← R} (if x /∈ FV(M))

where true do M  M where false do M  ∅ where M do ∅ ∅
where M do (N ∪R)  (where M do N) ∪ (where M do R)

where M do
⋃

{N |x← R}  
⋃

{where M do N |x← R}
where M do where N do R  where (M ∧N) do R

empty M  empty (
⋃

{〈〉|x←M}) (if M is not relation-typed)

Figure 2 Query normalization

The normal forms of queries under these rewriting rules construct no intermediate nested154

structures, and are straightforward to translate to equivalent SQL queries. Cooper [7]155

and Lindley and Cheney [14] give details of such translations. Cheney et al. [3] showed156

how to improve the performance and reliability of LINQ in F# using normalisation and157

gave many examples showing how higher-order queries support a convenient, compositional158

language-integrated query programming style.159

3 Reducibility with branching continuations160

We introduce here the extension of >>-lifting we use to derive a proof of strong normalization161

for NRCλ. The main contribution of this section is a refined definition of continuations with162

branching structure and multiple holes, as opposed to the linear structure with a single hole163

used by standard >>-lifting. In our definition, continuations (as well as the more general164

notion of context) are particular forms of terms: in this way, the notion of term reduction165

can be used for continuations as well, without need for auxiliary definitions.166

3.1 Contexts and continuations167

We start our discussion by introducing contexts, or terms with multiple, labelled holes that168

can be instantiated by plugging other terms (including other contexts) into them.169

I Definition 1 (context). Let us fix a countably infinite set P of indices: a context C is a170

term that may contain distinguished free variables [p], also called holes, where p ∈ P.171

Given a finite map from indices to terms [p1 7→M1, . . . , pn 7→Mn] ( context instantiation),172

the notation C[p1 7→M1, . . . , pn 7→Mn] ( context application) denotes the term obtained by173

simultaneously substituting M1, . . . ,Mn for the holes [p1], . . . , [pn].174

We will use metavariables η, θ to denote context instantiations.175

I Definition 2 (support). Given a context C, its support supp(C) is defined as the set of176

the indices p such that [p] occurs in C as a free variable:177

supp(C) , {p : [p] ∈ FV(C)}178

When a term does not contain any [p], we say that it is a pure term; when it is important179

that a term be pure, we will refer to it by using overlined metavariables L,M,N,R, . . ..180

Under the appropriate assumptions, a multiple context instantiation can be decomposed.181
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I Definition 3. An instantiation η is permutable iff for all p ∈ dom(η) we have FV(η(p))∩182

dom(η) = ∅.183

I Lemma 4. Let η be permutable and let us denote by η¬p the restriction of η to indices184

other than p. Then for all p ∈ dom(η) we have:185

Cη = C[p 7→ η(p)]η¬p = Cη¬p[p 7→ η(p)]186

We can now define continuations as certain contexts that capture how one or more187

collections can be used in a program.188

I Definition 5 (continuation). Continuations K are defined as the following subset of contexts:189

K,H ::= [p] | M | K ∪K |
⋃

{M |x← K} | where B do K190
191

where for all indices p, [p] can occur at most once.192

This definition differs from the traditional one in two ways: first, holes are decorated193

with an index; secondly, and most importantly, the production K ∪K allows continuations194

to branch and, as a consequence, to use more than one hole. Note that the grammar above is195

ambiguous, in the sense that certain expressions like where B do N can be obtained either196

from the production where B do K with K = N , or as pure terms by means of the production197

M : we resolve this ambiguity by parsing these expressions as pure terms whenever possible,198

and as continuations only when they are proper continuations. An additional complication of199

NRCλ when compared to the computational metalanguage for which >>-lifting was devised200

lies in the way conditional expressions can reduce when placed in an arbitrary context:201

continuations in the grammar above are not liberal enough to adapt to such reductions,202

therefore, like Cooper, we will need an additional definition of auxiliary continuations allowing203

holes to appear in the body of a comprehension (in addition to comprehension generators).204

I Definition 6 (auxiliary continuation). Auxiliary continuations are defined as the following205

subset of contexts:206

Q,O ::= [p] | M | Q ∪Q |
⋃

{Q|x← Q} | where B do Q207
208

where for all indices p, [p] can occur at most once.209

A continuation is therefore a special case of auxiliary continuation; however, an auxiliary210

continuation is allowed to branch not only with unions, but also with comprehensions.1 We211

use the following definition of frames to represent flat continuations with a distinguished212

hole.213

I Definition 7 (frame). Frames are defined by the following grammar:214

F ::=
⋃

{Q|x} |
⋃

{x← Q} | where B215
216

where for all indices p, [p] can occur at most once.217

1 It is worth noting that Cooper’s original definition of auxiliary continuation does not use branching
comprehension (nor branching unions), but is linear just like the original definition of continuation. The
only difference between regular and auxiliary continuations in his work is that the latter allowed nesting
not just within comprehension generators, but also within comprehension bodies (in our notation, this
would correspond to two separate productions

⋃
{M |x← Q} and

⋃
{Q|x← N}).
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The operation F p, lifting a frame to an auxiliary continuation with a distinguished hole218

[p] is defined by the following rules219 ⋃
{Q|x}p =

⋃
{Q|x← [p]} (p /∈ supp(Q))⋃

{x← Q}p =
⋃

{[p] |x← Q} (p /∈ supp(Q))
(where B)p = where B do [p]

220

The composition operation Q p©F is defined as:221

Q p©F = Q[p 7→ F p]222

We generally use frames in conjunction with continuations or auxiliary continuations when223

we need to partially expose their leaves: for example, if we write K = K0 p©
⋃

{M |x}, we224

know that instantiating K at index p with (for example) a singleton will create a redex:225

K[p 7→ {L}] K0[p 7→M
[
L
/
x
]
].226

We introduce two measures |·|p and ‖·‖p denoting the nesting depth of a hole [p]: the227

two measures differ in the treatment of nesting within the body of a comprehension.228

I Definition 8. The measures |Q|p and ‖Q‖p are defined as follows:229

|[q]|p = ‖[q]‖p =
{

1 if p = q

0 else∣∣M ∣∣
p

=
∥∥M∥∥

p
= 0

|Q1 ∪Q2|p = max(|Q1|p , |Q2|p) ‖Q1 ∪Q2‖p = max(‖Q1‖p , |Q2|p)
|where B Q|p = |Q|p + 1 ‖where B Q‖p = ‖Q‖p + 1

|
⋃

{Q1|x 7→ Q2}|p =


|Q1|p if p ∈ supp(Q1)
|Q2|p + 1 if p ∈ supp(Q2)
0 else

‖
⋃

{Q1|x 7→ Q2}‖p =


‖Q1‖p + 1 if p ∈ supp(Q1)
‖Q2‖p + 1 if p ∈ supp(Q2)
0 else

230

NRCλ reduction can be used immediately on contexts (including regular and auxiliary231

continuations) since these are simply terms with distinguished free variables; we will also232

abuse notation to allow ourselves specify reduction on hole instantiations: whenever η(p) N233

and η′ = η¬p[p 7→ N ], we can write η  η′.234

We will denote the set of strongly normalizing terms by SN . For strongly normalizing235

terms (and by extension for hole instantiations containing only strongly normalizing terms),236

we can introduce the concept of maximal reduction length.237

I Definition 9 (maximal reduction length). Suppose M ∈ SN : then , we define ν(M) as the238

maximum length of all reduction sequences starting with M .239

I Lemma 10. For all strongly normalizing terms M , if M  M ′, then ν(M ′) < ν(M).240

With an abuse of notation, given a context application η, we write ν(η) for
∑
p∈dom(η) ν(η(p))241

(whenever this value is defined).242

3.2 Renaming reduction243

Reducing a plain or auxiliary continuation will yield a context that is not necessarily in the244

same class because certain holes may have been duplicated. For this reason, we introduce a245

refined notion of renaming reduction which we can use to rename holes in the results so that246

each of them occurs at most one time.247



XX:8 Strongly Normalizing Higher-Order Relational Queries

I Definition 11. Given a term with holes M and a finite map σ : P → P, we write Mσ for248

the term obtained from M , replacing each hole [p] such that σ(p) is defined with [σ(p)].249

Even though finite renaming maps are partial functions, it is convenient to extend them250

to total functions by taking σ(p) = p whenever p /∈ dom(σ); we will write id to denote the251

empty renaming map, whose total extension is the identity function on P.252

I Definition 12 (renaming reduction). M σ-reduces to N (notation: M σ
 N) iff M  Nσ.253

Conveniently, it can be shown that every renaming reduction chain can be simulated by254

a plain reduction chain of the same length and vice-versa: therefore the notion of strongly255

normalizing term and the maximal reduction length ν(M) do not depend on whether we use256

plain or renaming reduction (this simple result is described in the appendix).257

Our goal is to describe the reduction of pure terms expressed in the form of instantiated258

continuations. One first difficulty we need to overcome is that, as we noted, the sets of259

continuations (both regular and auxiliary) are not closed under reduction; thankfully, we can260

prove they are closed under renaming reduction.261

I Lemma 13.262

1. For all continuations K, if K  C, there exist a continuation K ′ and a finite map σ263

such that K σ
 K ′ and K ′σ = C.264

2. For all auxiliary continuations Q, if Q C, there exist an auxiliary continuation Q′ and265

a finite map σ such that Q σ
 Q′ and Q′σ = C.266

Proof sketch. For all C we can find C ′, σ such that C = C ′σ and all the holes in C ′ are267

linear. For case 1, we can show by induction on the derivation of K  C ′σ that C ′ satisfies268

the grammar for continuations. Case 2 is similar. J269

Secondly, given a renaming reduction C
σ
 C ′, we want to be able to express the270

corresponding reduction on Cη: due to the renaming σ, it is not enough to change C to C ′,271

but we also need to construct some η′ containing precisely those mappings [q 7→ M ] such272

that, if σ(q) = p, then p ∈ dom(η) and η(p) = M . This construction is expressed by means273

of the following operation.274

I Definition 14. For all pure hole instantiations η and renamings σ, we define ησ as the275

hole instantiation such that:276

if σ(p) ∈ dom(η) then ησ(p) = η(σ(p));277

in all other cases, ησ(p) = η(σ).278

The results above allow us to express what happens when a reduction duplicates the279

holes in a continuation which is then combined with a hole instantiation.280

I Lemma 15. For all contexts C, renamings σ, and hole instantiations η such that, for all281

p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, if C σ
 C ′, then Cη σ

 C ′ησ.282

Remark. In [6], Cooper attempts to prove strong normalization for NRCλ using a similar,283

but weaker result:284

If K  C, then for all terms M there exists K ′M such that C[M ] = K ′M [M ] and285

K[M ] K ′M [M ].286
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Since he does not have multi-hole continuations and renaming reductions, his reasoning is287

that, whenever a hole is duplicated, e.g.288

K =
⋃

{N1 ∪N2|x← �} 
⋃

{N1|x← �} ∪
⋃

{N2|x← �} = C289

he resorts to obtaining a continuation from C simply by filling one of the holes with the290

instantiation M :291

K ′M =
⋃

{N1|x←M} ∪
⋃

{N2|x← �}292

Hence, K ′M [M ] = C[M ]. Unfortunately, subsequent proofs rely on the fact that ν(K) must293

decrease under reduction: since we have no control over ν(M), which could potentially be294

much greater than ν(K), it may be that ν(K ′M ) ≥ ν(K).295

In our setting, by combining Lemma 13 and 15, we can find a K ′ which is a proper296

contractum of K, so that ν(K ′) < ν(K), as required by subsequent proofs.297

The following result, like many other in the rest of this section, proceeds by well-founded298

induction; we will use the following notation to represent well-founded relations:299

< stands for the standard less-than relation on N, which is well-founded;300

l is the lexicographic extension of < to Nk, also well-founded;301

≺ will be used to provide a decreasing metric that depends on the specific proof: such302

metrics are defined as subsets of l and are thus well-founded.303

I Lemma 16. Let Q be an auxiliary continuation, and let η, θ context instantiations s.t.304

their union is permutable. If Qη ∈ SN and Qθ ∈ SN , then Qηθ ∈ SN .305

Proof. We assume, that all of the instantiations in η and θ are effective (otherwise, we can306

find strictly smaller η′, θ′ such that Qηθ = Qη′θ′, and all the instantiations are effective).307

We show Qη ∈ SN and Qθ ∈ SN imply Q ∈ SN , η ∈ SN and θ ∈ SN ; thus we can then308

prove the theorem by well-founded induction on (Q, η, θ) using the following metric:309

(Q1, η1, θ1) ≺ (Q2, η2, θ2) ⇐⇒ (ν(Q1), ‖Q1‖ , ν(η1)+ν(θ1))l(ν(Q2), ‖Q2‖ , ν(η2)+ν(θ2))310

We show that all of the possible contracta of Qηθ are s.n. by case analysis on the contraction.311

The important cases are the following:312

Q′ησθσ, where Q σ
 Q′: it is easy to see that ν(ησ) and ν(θσ) are defined because ν(η) and313

ν(θ) are; then the thesis follows from induction hypothesis, knowing that ν(Q′) < ν(Q)314

(Lemma 10).315

Q0[p 7→ N ]η0θ where Q = Q0 p©F , η = [p 7→M ]η0, and F p[p 7→M ] N (reduction at316

the interface). By Lemma 51 we know ν(Q0) ≤ ν(Q); we can easily prove ‖Q0‖ < ‖Q‖; we317

take η′ = [p 7→ N ]η0: since Qη reduces to Q0η
′ and both terms are strongly normalizing,318

we have that ν(η′) is defined. Then observe (Q0, η
′, θ) ≺ (Q, η, θ) and obtain the thesis319

by induction hypothesis. A symmetric case with p ∈ dom(θ) is proved similarly. J320

I Corollary 17. Q[p 7→M ]σ ∈ SN iff for all q s.t. σ(q) = p, we have Q[q 7→M ] ∈ SN .321

3.3 Candidates of reducibility322

We here define the notion of candidates of reducibility: sets of strongly normalizing terms323

enjoying certain closure properties that can be used to overapproximate the sets of terms324

of a certain type. Our version of candidates for NRCλ is a straightforward adaptation of325

the standard definition given by Girard and like that one is based on a notion of neutral326

terms, i.e. those terms that, when placed in an arbitrary context, do not create additional327

redexes. The set of neutral terms is denoted by NT . Let us introduce the following notation328

for Girard’s CRx properties of sets:329



XX:10 Strongly Normalizing Higher-Order Relational Queries

CR1(C) , C ⊆ SN330

CR2(C) , ∀M ∈ C,M ′.M  M ′ =⇒M ′ ∈ C331

CR3(C) , ∀M ∈ NT .(∀M ′.M  M ′ =⇒M ′ ∈ C) =⇒M ∈ C332

The set CR of the candidates of reducibility is then defined as the collection of those sets of333

terms which satisfy all the CRx properties. Some standard results include the non-emptiness334

of candidates (in particular, all free variables are in every candidate) and that SN ∈ CR.335

3.4 Reducibility sets336

In this section we introduce reducibility sets, which are sets of terms that we will use to337

provide an interpretation of the types of NRCλ; we will then prove that reducibility sets are338

candidates of reducibility, hence they only contain strongly normalizing terms. The following339

notation will be useful as a shorthand for certain operations on sets of terms that are used340

to define reducibility sets:341

C → D , {M : ∀N ∈ C, (M N) ∈ D}342

〈
−−−−→
`k : Ck〉 , {M : ∀i = 1, . . . , k,M.`i ∈ Ci}343

(p : C)> , {K : ∀M ∈ C.K[p 7→ {M}] ∈ SN}344

C>> , {M : ∀p,∀K ∈ (p : C)>,K[p 7→M ] ∈ SN}345

The sets (p : C)> and C>> are called the >-lifting and >>-lifting of C. These definitions346

refine the ones used in the literature by using indices: >-lifting is defined with respect to a347

given index p, while the definition of >>-lifting uses any index.348

I Definition 18 (reducibility). For all types T , the set RedT of reducible terms of type T is349

defined by recursion on T by means of the rules:350

RedA , SN RedS→T , RedS → RedT Red〈−−−→`k:Tk〉
, 〈
−−−−−−→
`k : RedTk

〉 Red{T} , Red>>T351

Let us use metavariables Θ,Θ′, . . . to denote finite maps from indices to sets of terms in352

the form (p1 : C1, . . . , pk : Ck). We extend the notion of >-lifting to such maps by taking the353

intersection of all the (pi : Ci)>. This notation is useful to track Θ under renaming reduction.354

355

I Definition 19. Θ> ,
⋂
p∈dom(Θ)(p : Θ(p))>356

I Definition 20. Let Θ be a finite map from indices to sets of terms and σ a renaming: then357

we define Θσ as the finite map Θσ(p) = Θ(σ(p)), defined for all p such that σ(p) ∈ dom(Θ).358

We now proceed with the proof that all the sets RedT are candidates of reducibility: we359

will only focus on collections since for the other types the result is standard. The proofs of360

CR1 and CR2 do not differ much from the standard >>-lifting technique.361

I Lemma 21 (CR1 for continuations). For all p and all non-empty C, (p : C)> ⊆ SN .362

I Lemma 22 (CR1 for collections). Suppose CR1(C): then CR1(C>>).363

I Lemma 23 (CR2 for collections). Suppose M ∈ C>>, and M  M ′: then M ′ ∈ C>>.364

In order to prove CR2 for all types (and particularly for collections), we do not need to365

establish an analogous property on continuations; however such a property is still useful for366

subsequent results (particularly CR3): its statement must, of course, consider that reduction367

may duplicate (or indeed delete) holes, and thus employs renaming reduction.368
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I Lemma 24 (CR2 for continuations). If K ∈ Θ> and K σ
 K ′, then K ′ ∈ (Θσ)>.369

The lemma above could have some rather scary consequences for our proof: since reducing370

a term-in-continuation can lead to duplication, every proof of a statement about the strong371

normalizability of a term-in-continuation that proceeds by induction on its reduction chains372

would need to be generalized to n-ary instantiations of n-ary continuations! Fortunately,373

there is a better solution: instantiations to pure terms are always permutable, therefore we374

can simply consider each hole separately, as stated in the following lemma.375

I Lemma 25. K ∈ (Θσ)> if, and only if, for all q ∈ dom(Θσ), we have K ∈ (q : Θ(σ(q)))>.376

In particular, K ∈ ((p : C)σ)> if, and only if, for all q s.t. σ(q) = p, we have K ∈ (q : C)>.377

This is everything we need to prove CR3.378

I Lemma 26 (CR3 for collections). Let C ∈ CR, and M a neutral term such that for all379

reductions M  M ′ we have M ′ ∈ C>>. Then M ∈ C>>.380

Proof. By definition, we need to prove K[p 7→ M ] ∈ SN whenever K ∈ (p : C)> for some381

index p. By Lemma 21, knowing that C, being a candidate, is non-empty, we have K ∈ SN .382

We can thus proceed by well-founded induction on ν(K) to prove the strengthened statement:383

for all indices q, if K ∈ (q : C)>, then K[q 7→M ] ∈ SN . Equivalently, we prove that all the384

contracta of K[q 7→M ] are s.n. by cases on the possible contracta:385

K ′[q 7→M ]σ (where K σ
 K ′): to prove this term is s.n., by Lemma 17, we need to prove386

K ′[q′ 7→ M ] ∈ SN whenever σ(q′) = q; by Lemma 24 and 25, we know K ′ ∈ (q′ : C)>,387

and naturally ν(K ′) < ν(K) (Lemma 10), thus the thesis follows by the IH.388

K[p 7→M ′] (where M  M ′): this is s.n. because M ′ ∈ C>> by hypothesis.389

Since M is neutral, there are no reductions at the interface. J390

I Theorem 27. For all types T , RedT ∈ CR.391

Proof. Standard by induction on T . For T = {T ′}, we use Lemma 22, 23, and 26. J392

4 Strong normalization393

Having proved that the reducibility sets of all types are candidates of reducibility, in order394

to prove strong normalization we only need to know that every well-typed term is in the395

reducibility set corresponding to its type: this proof is by structural induction on the396

derivation of the typing judgment. Reducibility of singletons is trivial by definition, while397

that of empty collections is proved in the same style as [6], with the obvious adaptations.398

I Lemma 28 (reducibility for singletons). For all C, if M ∈ C, then {M} ∈ C>>.399

I Lemma 29 (reducibility for ∅). For all C, ∅ ∈ C>>.400

As for unions, we will prove a more general statement on auxiliary continuations.401

I Lemma 30.402

For all auxiliary continuations Q,O1, O2 with pairwise disjoint supports, if Q[p 7→ O1] ∈ SN403

and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .404

Proof sketch. The proof follows the same style as [6]; however since our definition of auxiliary405

continuations is more general than his, the theorem statement mentions O1, O2 rather than406

pure terms: the hypothesis on the supports of the continuations being disjoint is required by407

this generalization. J408
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I Corollary 31 (reducibility for unions). If M ∈ C>> and N ∈ C>>, then M ∪N ∈ C>>.409

Like in proofs based on standard >>-lifting, the most challenging cases are those dealing410

with commuting conversions – in our case, comprehensions and conditionals.411

I Lemma 32. Let K, L, N such that K[p 7→ N
[
L
/
x
]
] ∈ SN and L ∈ SN . Then,412

K[p 7→
⋃

{N |x← {L}}] ∈ SN .413

Proof. In this proof, we assume the names of bound variables are chosen so as to avoid414

duplicates, and distinct from the free variables. We proceed by well-founded induction on415

(K, p,N,L) using the following metric:416

(K1, p1, N1, L1) ≺ (K2, p2, N2, L2)
⇐⇒ (ν(K1[p1 7→ N1

[
L1
/
x
]
]) + ν(L1), ‖K1‖p1

, size(N1))
l(ν(K2[p2 7→ N2

[
L2
/
x
]
]) + ν(L2), ‖K2‖p2

, size(N2))
417

Now we show that every contractum must be a strongly normalizing:418

K[p 7→ N
[
L
/
x
]
]: this term is s.n. by hypothesis.419

K ′[p 7→
⋃

{N |x← {L}}]σ, whereK σ
 K ′. By Lemma 10 we know ν(K ′[p 7→ N

[
L
/
x
]
]σ) <420

ν(K[p 7→ N
[
L
/
x
]
]) (since the former is a contractum of the latter), which implies421

ν(K ′[q 7→ N
[
L
/
x
]
]) ≤ ν(K ′[p 7→ N

[
L
/
x
]
]σ) < ν(K[p 7→ N

[
L
/
x
]
]) for all q s.t.422

σ(q) = p by means of Lemma 54 (because [q 7→ N
[
L
/
x
]
] is a subapplication of423

[p 7→ N
[
L
/
x
]
]σ); then we can apply the IH to obtain, for all q s.t. σ(q) = p,424

K ′[q 7→
⋃

{N |x← {L}}] ∈ SN ; by Lemma 17, this implies the thesis.425

K[p 7→ ∅] (when N = ∅): this is equal to K[p 7→ ∅
[
L
/
x
]
], which is s.n. by hypothesis.426

K[p 7→
⋃

{N1|x← {L}}∪
⋃

{N2|x← {L}}] (whenN = N1∪N2); by IH (since size(Ni) <427

size(N1 ∪N2), and all other metrics do not increase) we prove K[p 7→
⋃

{Ni|x← {L}}]428

(for i = 1, 2) by IH, and consequently obtain the thesis by Lemma 30.429

K0[p 7→
⋃

{
⋃

{M |y ← N}|x← {L}}], where K = K0 p©
⋃

{M |y}; since we know, by430

the hypothesis on the choice of bound variables, that x /∈ FV(M), we note that K0[p 7→431 ⋃
{M |y ← N}

[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, we know ‖K0‖p < ‖K‖p; then432

we can apply the IH to obtain the thesis.433

K0[p 7→
⋃

{where B do N |x← {L}}] (when K = K0 p© where B): since we know, from434

the hypothesis on the choice of bound variables, that x /∈ FV(B), we note that K0[p 7→435

(where B do N)
[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, we know ‖K0‖p < ‖K‖p; then436

we can apply the IH to obtain the thesis.437

reductions within N or L follow from the IH by reducing the induction metric. J438

I Lemma 33 (reducibility for comprehensions). Assume CR1(C), CR1(D), M ∈ C>> and for439

all L ∈ C, N
[
L
/
x
]
∈ D>>. Then

⋃
{N |x←M} ∈ D>>.440

Proof. We assume p, K ∈ (p : D)> and prove K[p 7→
⋃

{N |x←M}] ∈ SN . We start by441

showing that K ′ = K p©
⋃

{N |x} ∈ (p : C)>, or equivalently that for all L ∈ C, K ′[p 7→442

{L}] = K[p 7→
⋃

{N |x← {L}}] ∈ SN : since CR1(C), we know L ∈ SN , and since443

N
[
L
/
x
]
∈ D>>, K[p 7→ N

[
L
/
x
]
] ∈ SN ; then we can apply Lemma 32 to obtain K ′[p 7→444

{L}] ∈ SN and consequently K ′ ∈ (p : C)>. But then, since M ∈ C>>, we have K ′[p 7→445

M ] = K[p 7→
⋃

{N |x←M}] ∈ SN , which is what we needed to prove. J446

Reducibility for conditionals is proved in a similar manner. However, to consider all the447

conversions commuting with where, we need to use the more general auxiliary continuations.448

I Lemma 34. Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , and supp(Q)∩supp(O) = ∅.449

Then Q[p 7→ where B do O] ∈ SN .450
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Proof sketch. We proceed by well-founded induction on (Q,B,O, p) using the following451

metric:452

(Q1, B1, O1, p1) ≺ (Q2, B2, O2, p2) ⇐⇒
(ν(Q1[p1 7→ O1]) + ν(B1), |Q1|p1

, size(O1)) l (ν(Q2[p2 7→ O2]) + ν(B2), |Q2|p2
, size(O2))453

We show every contractum must be a strongly normalizing term; we apply the IH to454

new auxiliary continuations obtained by placing pieces of O into Q or vice-versa: the455

hypothesis on the supports of Q and O is used to ensure that the new continuations are456

well-formed. The use of |·|p rather than ‖·‖p is needed to ensure that contractions in the457

form Q[p 7→ where B do
⋃

{O1|x← O2}]  (Q p©
⋃

{x← O2})[p 7→ where B do O1] do458

not increase the metric. J459

I Corollary 35 (reducibility for conditionals).460

If B ∈ SN and N ∈ Red{T}, then where B do N ∈ Red{T}.461

Finally, reducibility for the emptiness test is proved in the same style as [6].462

I Lemma 36. For all M and T such that Γ ` M : {T} and M ∈ Red>>T , we have463

empty(M) ∈ SN .464

4.1 Main theorem465

Before stating and proving the main theorem, we introduce some auxiliary notation.466

I Definition 37.467

1. A substitution ρ satisfies Γ (notation: ρ � Γ) iff, for all x ∈ dom(Γ), ρ(x) ∈ RedΓ(x).468

2. A substitution ρ satisfies M with type T (notation: ρ �M : T ) iff Mρ ∈ RedT .469

As usual, the main result is obtained as a corollary of a stronger theorem generalized to470

substitutions into open terms, by using the identity substitution idΓ.471

I Lemma 38. For all Γ, we have idΓ � Γ.472

I Theorem 39. If Γ `M : T , then for all ρ such that ρ � Γ, we have ρ �M : T473

Proof. By induction on the derivation of Γ `M : T . When M is empty, a singleton, a union,474

an emptiness test, or a conditional, we use Lemma 29, 28, 31, 36, and 35. For comprehensions475

such that Γ `
⋃

{M1|x←M2} : {T}, we know by IH that ρ � M2 : {S} and for all476

ρ′ � Γ, x : S we have ρ′ �M1 : {T}: we prove that for all L ∈ RedS , ρ [L/x] � Γ, x : S, hence477

ρ [L/x] `M1 : {T}; then we obtain ρ �
⋃

{M1|x←M2} : {T} by Lemma 33. Non-collection478

cases are standard. J479

I Corollary 40. If Γ `M : T , then M ∈ SN .480

5 Heterogeneous Collections481

In a short paper [19], we introduced a generalization of NRC called NRC (Set,Bag), which482

contains both set-valued and bag-valued collections (with distinct types denoted by {T}483

and HT I), along with mapping from bags to sets (deduplication δ) and from sets to bags484

(promotion ι). We conjectured that this language also satisfies a normalization property. Here,485



XX:14 Strongly Normalizing Higher-Order Relational Queries

we prove this claim, even extending NRC (Set,Bag) to a richer langauage NRCλ(Set,Bag)486

with higher-order (nonrecursive) functions.487

L,M,N ::= . . . | f | HMI | M ]N |
⊎

HM |x← NI
| wherebag M do N | emptybag M | δM | ιM488

The notations f, HMI, M ] N ,
⊎

HM |x← NI denote empty and singleton bags, bag489

disjoint union and bag comprehension; the language also includes conditionals and emptiness490

tests on bags. We omit the typing rules, and observe that the reduction rules involving bag491

operations correspond to those for set operations, and additionally include the following:492

δf ∅ δHMI {M} δ(M ]N) δM ∪ δN διM  M

δ
⊎

HM |x← NI 
⋃

{δM |x← δN} δ(wherebag M do N) where M do δN
ι∅ f ι{M} HMI ι(where M do N) wherebag M do ιN

493

SN for NRCλ(Set,Bag) is proved by first translating the language to a version of NRCλ494

retaining the operations δ and ι that we call NRCλδι, by means of a forgetful translation b·c495

mapping empty bags, bag unions and bag comprehensions to the corresponding set constructs.496

We prove that every contraction in NRCλ(Set,Bag) is translated to a contraction in NRCλδι,497

and thus obtain SN for NRCλ(Set,Bag) as a corollary of SN for NRCλδι.498

I Theorem 41. If Γ `M : T in NRCλ(Set,Bag), then bΓc ` bMc : bT c in NRCλδι.499

I Lemma 42. For all terms M of NRCλ(Set,Bag), if M  M ′, we have bMc bM ′c in500

NRCλδι. Consequently, if bM ′c ∈ SN in NRCλδι, then M ′ ∈ SN in NRCλ(Set,Bag).501

I Theorem 43. If Γ `M : T in NRCλδι, then M ∈ SN in NRCλδι.502

I Corollary 44. If Γ `M : T in NRCλ(Set,Bag), then M ∈ SN in NRCλ(Set,Bag).503

6 Related Work504

This paper builds on a long line of research on normalisation of comprehension queries, a505

model of query languages popularized over 25 years ago by Buneman et al. [2]. Wong [20]506

proved conservativity via a strongly normalising rewrite system, which was used in Kleisli [21],507

a functional query system, in which flat query expressions were normalised to SQL. Libkin508

and Wong [12, 13] investigated conservativity in the presence of aggregates, internal generic509

functions, and bag operations, and demonstrated that bag operations can be expressed510

using nested comprehensions. However, their normalization results studied bag queries by511

translating to relational queries with aggregation, and did not consider higher-order queries,512

so they do not imply the normalization results for NRCλ(Set,Bag) given here.513

Cooper [7] first investigated query normalisation (and hence conservativity) in the presence514

of higher-order functions. He gave a rewrite system showing how to normalise homogeneous515

(that is, pure set or pure bag) queries to eliminate intermediate occurrences of nesting or of516

function types. However, although Cooper claimed a proof (based on >>-lifting [15]) and517

provided proof details in his PhD thesis [6], there unfortunately turned out to be a nontrivial518

lacuna in that proof, and this paper therefore (in our opinion) contains the first complete519

proof of normalisation for higher-order queries, even for the homogeneous case.520

Since the fundamental work of Wong and others on the Kleisli system, language-integrated521

query has gradually made its way into other systems, most notably Microsoft’s .NET522

framework languages C# and F# [16], and the Web programming language Links [8].523

Cheney et al. [3] formally investigated the F# approach to language-integrated query and524
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showed that normalisation results due to Wong and Cooper could be adapted to improve it525

further; however, their work considered only homogeneous collections. In subsequent work,526

Cheney et al. [4] showed how use normalisation to perform query shredding for multiset527

queries, in which a query returning a type with n nested collections can be implemented by528

combining the results of n flat queries; this has been implemented in Links [8].529

Seeral recent efforts to formalize and reason about the semantics of SQL are complementary530

to our work. Guagliardo and Libkin [10] presented a semantics for SQL’s actual behaviour in531

the presence of set and multiset operators (including bag intersection and difference) as well532

as incomplete information (nulls), and related the expressiveness of this fragment of SQL533

with that of an algebra over bags with nulls. Chu et al. [5] presented a formalised semantics534

for reasoning about SQL (including set and bag semantics as well as aggregation/grouping,535

but excluding nulls) using nested relational queries in Coq, while Benzaken and Contejean [1]536

presented a semantics including all of these SQL features (set, multiset, aggregation/grouping,537

nulls), and formalised the semantics in Coq. Kiselyov et al. [11] has proposed language-538

integrated query techniques that handle sorting operations (SQL’s ORDER BY).539

However, the above work on semantics has not considered query normalisation, and to the540

best of our knowledge normalisation results for query languages with more than one collection541

type were previously unknown even in the first-order case. We are interested in extending our542

results for mixed set and bag semantics to handle nulls, grouping/aggregation, and sorting,543

thus extending higher-order language integrated query to cover all of the most widely-used544

SQL features. To the best of our knowledge, normalisation of higher-order queries in the545

presence of all of these features simultaneously remains an open problem, which we plan to546

consider next. In addition, fully formalising such normalisation proofs also appears to be a547

nontrivial challenge.548

7 Conclusions549

Integrating database queries into programming languages has many benefits, such as type550

safety and avoidance of common SQL injection attacks, but also imposes limitations that551

prevent programmers from constructing queries dynamically as they could by concatenating552

SQL strings unsafely. Previous work has demonstrated that many useful dynamic queries553

can be constructed safely using higher-order functions inside language-integrated queries;554

provided such functions are not recursive, it was believed, query expressions can be normalised.555

Moreover, while it is common in practice to provide support for SQL features such as mixed556

set and bag operators, it is not well understood in theory how to normalise these queries in557

the presence of higher-order functions. Previous work on higher-order query normalisation558

has considered only homogeneous (that is, pure set or pure bag) queries, and in the process559

of attempting to generalise this work to a heterogeneous setting, we discovered a nontrivial560

gap in the previous proof of strong normalisation. We therefore prove strong normalisation561

for both homogeneous and heterogeneous queries for the first time.562

As next steps, we intend to extend the Links implementation of language-integrated563

query with heterogeneous queries and normalisation, and to investigate (higher-order) query564

normalisation and conservativity for the remaining common SQL features, such as nulls,565

grouping/aggregation, and ordering.566
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A Proofs611

This appendix expands on some results whose proofs were omitted or only sketched in the612

paper.613

Since under plain reduction each term can be reduced only in a finite number of ways, it614

is easy to see that ν(M) is defined for any strongly normalizing term M ; however, under615

renaming reduction, a term may be reduced in an infinite number of ways because, ifM  N ,616

there may be infinite R, σ such that N = Rσ. Fortunately, we can prove that to any renaming617

reduction chain there corresponds a plain reduction chain of the same length, and vice-versa:618

consequently, the set of strongly normalizing terms is the same under the two notions of619

reduction, and ν(M) refers to the maximal length of reduction chains starting at M either620

with or without renaming.621

I Lemma 45. For all contexts C, terms N and indices p, if C[p 7→ N ] ∈ SN , we have622

C ∈ SN ; if p ∈ supp(C), then N ∈ SN .623

I Lemma 46. If M  N , then Mσ  Nσ.624

I Lemma 47.625

626

1. If M · · · ︸ ︷︷ ︸
n times

N , then M id
 · · · id

 ︸ ︷︷ ︸
n times

N627

2. If M σ1 · · · σn N , then M · · · ︸ ︷︷ ︸
n times

Nσn · · ·σ1628

Proof. The first part of the lemma is trivial. For the second part, proceed by induction on629

the length of the reduction chain: in the inductive case, we have M σ1 · · · σn M ′
σn+1
 N by630

hypothesis and M  · · ·  M ′σn · · ·σ1 by induction hypothesis; to obtain the thesis, we631

only need to prove that632

M ′σn · · ·σ1  Nσn+1 · · ·σ1633

In order for this to be true, by Lemma 46, it is sufficient to show that M ′  Nσn+1; this is634

by definition equivalent to M ′ σn+1
 N , which we know by hypothesis. J635

I Corollary 48. Suppose M ∈ SN : if M σ
 M ′, then ν(M ′) is defined and ν(M ′) < ν(M).636

Proof. By Lemma 47, for any plain reduction chain there exists a renaming reduction chain637

of the same length, and vice-versa. Thus, since plain reduction lowers the length of the638

maximal reduction chain (Lemma 10), the same holds for renaming reduction. J639

Proof of Lemma 13.640

1. For all continuations K, if K  C, there exist a continuation K ′ and a finite map σ641

such that K σ
 K ′ and K ′σ = C.642

2. For all auxiliary continuation Q, if Q C, there exist an auxiliary continuation Q′ and643

a finite map σ such that Q σ
 Q′ and Q′σ = C.644

Let C be a contractum of the continuation we wish to reduce. This contractum will not,645

in general, satisfy the side condition that holes must be linear; however we can show that,646

for any context with duplicated holes, there exists a structurally equal context with linear647

holes. Operationally, if C contains n holes, we generate n different fresh indices in P, and648

replace the index of each hole in C with a different fresh index to obtain a new context649

C ′: this induces a finite map σ : supp(C ′) → supp(C) such that C ′σ = C. By structural650
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induction on the derivation of the reduction and by case analysis on the structure of K (or651

on the structure of Q) we show that C ′ must also satisfy the grammar in Definition 5 (resp.652

Definition 6); furthermore, C ′ satisfies the linearity condition by construction, which proves653

it is a continuation K ′ (resp. an auxiliary continuation Q′). J654

I Lemma 49. For all contexts C and hole instantiations η, if C  C ′, then Cη  C ′η.655

I Lemma 50. For all contexts C, finite maps σ, and hole instantiations η such that, for all656

p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, we have Cση = Cησσ.657

Proof. By structural induction on C. The interesting case is when C = [p]. If σ(p) ∈ dom(η),658

we have [p]ση = [σ(p)] η = η(σ(p)) = η(σ(p))σ = [p] ησσ; otherwise, [p]ση = [p] =659

[p] ησσ. J660

Proof of Lemma 15. For all contexts C, renamings σ, and hole instantiations η such that,661

for all p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, if C σ
 C ′, then Cη σ

 C ′ησ.662

By definition of σ
 , we have C  C ′σ; then, by Lemma 49, we obtain Cη  C ′ση; by663

Lemma 50, we know C ′ση = C ′ησσ; then the thesis Cη σ
 C ′ησ follows immediately by the664

definition of σ
 . J665

I Lemma 51. Suppose Q p© f ∈ SN : then, ν(Q) ≤ ν(Q p© f).666

Proof. By induction on the possible reduction sequences in Q, we show there exists a667

corresponding reduction sequence with the same length in Q p© f . J668

I Lemma 52.669

If M  M ′ and p ∈ supp(Q), then Q[p 7→M ] id
 Q[p 7→M ′].670

Proof. By induction on the structure of Q, we show that for each reduction in the hypothesis,671

we can construct a corresponding reduction proving the thesis. J672

I Lemma 53 (classification of reductions in applied continuations). Suppose Qη  N , where673

η is permutable, and dom(η) ⊆ supp(Q); then one of the following holds:674

1. there exist an auxiliary continuation Q′ and a finite map σ such that N = Q′ησ, where675

ησ is permutable, and Q σ
 Q′: in this case, we say the reduction is within Q;676

2. there exist auxiliary continuations Q1, Q2, an index q ∈ supp(Q1), a variable x, and a677

term L such that Q = (Q1 q©
⋃

{x← {L}})[q 7→ Q2], and N = Q1[q 7→ Q2
[
L
/
x
]
]η∗,678

where we define η∗(p) = η(p)
[
L
/
x
]
for all p ∈ supp(Q2), otherwise η∗(p) = η(p).: this is679

a reduction within Q too;680

3. there exists a permutable η′ such that N = Qη′ and η  η′: in this case we say the681

reduction is within η;682

4. there exist an auxiliary continuation Q0, an index p such that p ∈ supp(Q0) and p ∈683

dom(η), an auxiliary frame f and a term M such that N = Q0[p 7→M ]η¬p, Q = Q0 p© f ,684

and fp[p 7→ η(p)] M : in this case we say the reduction is at the interface.685

Furthermore, if Q is a regular continuation K, then the Q′ in case 1 can be chosen to be a686

regular continuation K ′, and case 2 cannot happen.687

Proof. By induction on Q with a case analysis on the reduction rule applied. J688

I Lemma 54. If Qη ∈ SN , then Q ∈ SN and ν(Q) ≤ ν(Qη).689
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Proof. We proceed by well-founded induction on (Q, η) using the metric:690

(Q1, η1) ≺ (Q2, η2) ⇐⇒ ∃σ : Qη1
σ
 Q′η2691

For all contractions Q σ
 Q′, by Lemma 52 we know Qη

σ
 Q′ησ: then we can apply the IH692

with (Q′, ησ) to prove Q′: thus we conclude Q ∈ SN .693

To prove ν(Q) ≤ ν(Qη), it is sufficient to see that for each reduction step in Q we have a694

corresponding reduction step in Qη: thus the reduction chains starting in Qη must be at695

least as long as those in Q. J696

I Lemma 55. Suppose CR1(C): then for all indices p, q, [p] ∈ (q 7→ C)>.697

Proof. To prove the lemma, it is sufficient to show that for all M ∈ C we have [p][q 7→698

{M}] ∈ SN . This term is equal to either {M} (if p = q) or to [p] (otherwise); both terms699

are s.n. (in the case of {M}, this is because CR1 holds for C, thus M ∈ SN ). J700

Proof of Lemma 21. For all p and all non-empty C, (p : C)> ⊆ SN .701

We assume K ∈ (p : C)> and M ∈ C: by definition, we know that K[p 7→ {M}] ∈ SN ;702

then we have K ∈ SN by Lemma 45. J703

Proof of Lemma 22. Suppose CR1(C): then CR1(C>>).704

We need to prove that if M ∈ C>>, then M ∈ SN . By the definition of C>>, we know705

that for all p, K[p 7→M ] ∈ SN whenever K ∈ (p : C)>. Now assume any p, and by Lemma 55706

choose K = [p]: then K[p 7→M ] = M ∈ SN , which proves the thesis. J707

I Lemma 56. If K ∈ SN is a continuation, then for all indices p we have K[p 7→ ∅] ∈ SN .708

Proof. We proceed by well-founded induction, using the metric:709

(K1, p1) ≺ (K2, p2) ⇐⇒ (ν(K1), ‖K1‖p1
) l (ν(K2), ‖K2‖p2

)710

K ′[p 7→ ∅]σ, where K σ
 K ′: by Lemma 17, we need to show K ′[q 7→ ∅] ∈ SN whenever711

σ(q) = p; this follows from the IH, with ν(K ′) < ν(K) by Lemma 10.712

K0[p 7→ ∅], where K = K0 p©F for some frame F : by Lemma 51 we have ν(K0) ≤ ν(K);713

furthermore, we can easily prove that ‖K0‖p < ‖K‖p; then the thesis follows immediately714

from the IH. J715

Proof of Lemma 29. For all C, ∅ ∈ C>>.716

Immediate from Lemma 56, by unfolding the definition of C>>. J717

Proof of Lemma 30. For all Q-continuations Q,O1, O2 with pairwise disjoint supports, if718

Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .719

We assume p ∈ supp(Q) (otherwise, Q[p 7→ O1] = Q[p 7→ O2] = Q[p 7→ O1 ∪ O2], and720

the thesis holds trivially). Then, by Lemma 45, Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN721

imply Q ∈ SN , O1 ∈ SN , and O2 ∈ SN : thus we can proceed by well-founded induction on722

(Q, p,O1, O2) using the following metric:723

(Q1, p1, O1
1, O

1
2) ≺ (Q2, p2, O2

1, O
2
2)

⇐⇒ (ν(Q1),
∥∥Q1

∥∥
p1 , ν(O1

1) + ν(O1
2)) l (ν(Q2),

∥∥Q2
∥∥
p2 , ν(O2

1) + ν(O2
2))724

to prove that if Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪ O2] ∈ SN .725

Equivalently, we will consider all possible contracta and show that each of them must726
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be a strongly normalizing term; we will apply the induction hypothesis to new auxiliary727

continuations obtained by placing pieces of Q into O1 and O2: the hypothesis on the supports728

of the continuations being disjoint is used to make sure that the new continuations do not729

contain duplicate holes and are thus well-formed. By cases on the possible contracta:730

Q1[q 7→ Q2
[
L
/
x
]
][p 7→ (O1

[
L
/
x
]
) ∪ (O2

[
L
/
x
]
)] (where Q = (Q1 q©

⋃
{x← {L}})[q 7→731

Q2], q ∈ supp(Q1), p ∈ supp(Q2)): let Q′ = Q1[q 7→ Q2
[
L
/
x
]
], and note that Q  Q′,732

hence ν(Q′) < ν(Q); note Q[p 7→ O1] Q′[p 7→ O1
[
L
/
x
]
], hence since the former term733

is s.n., so must be the latter, and hence also O1
[
L
/
x
]
∈ SN ; similarly, O2

[
L
/
x
]
; then734

we can apply the IH with (Q′, p, O1
[
L
/
x
]
, O2

[
L
/
x
]
) to obtain the thesis.735

Q′[p 7→ O1 ∪ O2]σ (where Q σ
 Q′): by Lemma 17, we need to prove that, for all736

q s.t. σ(q) = p, Q′[q 7→ O1 ∪ O2] ∈ SN ; since Q[p 7→ O1] ∈ SN , we also have737

Q′[p 7→ O1]σ ∈ SN , which implies Q′[q 7→ O1] ∈ SN by Lemma 17; for the same reason,738

Q′[q 7→ O2] ∈ SN ; by Lemma 10, ν(Q′) < ν(Q), thus the thesis follows by IH.739

Q1[p 7→ (
⋃

{Q2|x← O1})∪(
⋃

{Q2|x← O2})] (whereQ = Q1 p©
⋃

{Q2|x}): by Lemma 51,740

ν(Q1) ≤ ν(Q); we also know ‖Q1‖p < ‖Q‖p; take O′1 :=
⋃

{Q2|x← O1} and note that,741

since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm of a strongly normalizing term,742

thus O′1 ∈ SN ; similarly, we define O′2 :=
⋃

{Q2|x← O2} and show it is s.n. in a similar743

way; then (Q1, p, O
′
1, O

′
2) reduce the metric, and we can prove the thesis by IH.744

Q1[p 7→ (
⋃

{O1|x← Q2}) ∪ (
⋃

{O2|x← Q2})] (where Q = Q1 p©
⋃

{x← Q2}): by745

Lemma 51, ν(Q1) ≤ ν(Q); we also know ‖Q1‖p < ‖Q‖p; take O′1 :=
⋃

{O1|x← Q2}746

and note that, since Q[p 7→ O1] = Q1[p 7→ O′1], we have O′1 is a subterm of a strongly747

normalizing term, thus O′1 ∈ SN ; similarly, we define O′2 :=
⋃

{O2|x← Q2} and show748

it is s.n. in a similar way; then (Q1, p, O
′
1, O

′
2) reduce the metric, and we can prove the749

thesis by IH.750

Q0[p 7→ (where B do O1)∪ (where B do O2)] (where Q = Q0 p© where B): by Lemma 51,751

ν(Q0) ≤ ν(Q); we also know ‖Q0‖p < ‖Q‖p; take O′1 := where B do O1 and note that,752

since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm of a strongly normalizing753

term, thus O′1 ∈ SN ; similarly, we define O′2 := where B do O2 and prove it is strongly754

normalizing in the same way; then (Q0, p, O
′
1, O

′
2) reduce the metric, and we can prove755

the thesis by IH.756

Contractions within O1 or O2 reduce ν(O1) + ν(O2), thus the thesis follows by IH. J757

Reducibility for conditionals similarly to comprehensions. However, to consider all the758

conversions commuting with where, we need to use the more general auxiliary continuations.759

760

I Lemma 57. If Q[p 7→ M ∪ N ] ∈ SN , then Q[p 7→ M ] ∈ SN and Q[p 7→ N ] ∈ SN ;761

furthermore, we have:762

ν(Q[p 7→M ]) ≤ ν(Q[p 7→M ∪N ])763

ν(Q[p 7→ N ]) ≤ ν(Q[p 7→M ∪N ])764
765

Proof. We assume p ∈ supp(Q) (otherwise, Q[p 7→ M ] = Q[p 7→ N ] = Q[p 7→ M ∪ N ],766

and the thesis holds trivially), then we show that any contraction in Q[p 7→ M ] has a767

corresponding non-empty reduction sequence in Q[p 7→ M ∪ N ], and the two reductions768

preserve the term form, therefore no reduction sequence of Q[p 7→ M ] is longer than the769

maximal one in Q[p 7→M ∪N ]. The same reasoning applies to Q[p 7→ N ]. J770

Proof of Lemma 34. Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , and supp(Q) ∩771

supp(O) = ∅. Then Q[p 7→ where B do O] ∈ SN .772



W. Ricciotti and J. Cheney XX:21

In this proof, we assume the names of bound variables are chosen so as to avoid duplicates,773

and distinct from the free variables. We proceed by well-founded induction on (Q,B,O, p)774

using the following metric:775

(Q1, B1, O1, p1) ≺ (Q2, B2, O2, p2) ⇐⇒
(ν(Q1[p1 7→ O1]) + ν(B1), |Q1|p1

, size(O1)) l (ν(Q2[p2 7→ O2]) + ν(B2), |Q2|p2
, size(O2))776

We will consider all possible contracta and show that each of them must be a strongly777

normalizing term; we will apply the induction hypothesis to new auxiliary continuations778

obtained by placing pieces of O into Q or vice-versa: the hypothesis on the supports of Q and779

O being disjoint is used to make sure that the new continuations do not contain duplicate780

holes and are thus well-formed. By cases on the possible contracta:781

Q1[q 7→ Q2
[
L
/
x
]
][p 7→ (where B do O)

[
L
/
x
]
], where Q = (Q1 q©

⋃
{x← {L}})[q 7→782

Q2], q ∈ supp(Q1), and p ∈ supp(Q2); by the freshness condition we know x /∈ FV(B), thus783

(where B do O)
[
L
/
x
]

= where B do (O
[
L
/
x
]
); we take Q′ = Q1[q 7→ Q2

[
L
/
x
]
] and784

O′ = O
[
L
/
x
]
, and note that ν(Q′[p 7→ O′]) < ν(Q[p 7→ O]), because the former term is a785

contractum of the latter: then we can apply the IH to prove Q′[p 7→ where B do O′] ∈ SN ,786

as needed.787

Q′[p 7→ where B do O]σ, where Q σ
 Q′. We know ν(Q′[p 7→ O]σ) < ν(Q[p 7→ O]) by788

Lemma 10 since the latter is a contractum of the former. By Lemma 17, for all q s.t.789

σ(q) = p we have ν(Q′[q 7→ O]) ≤ ν(Q′[p 7→ O]σ); we can thus apply the IH to obtain790

Q[q 7→ where B do O] ∈ SN whenever σ(q) = p. By Lemma 17, this implies the thesis.791

Q1[p 7→ where B do
⋃

{Q2|x← O}], where Q = Q1 p©
⋃

{Q2|x}; we take O′ =792 ⋃
{Q2|x← O}, and we note that Q[p 7→ O] = Q1[p 7→ O′] and |Q1|p < |Q|p; we793

can thus apply the IH to prove Q1[p 7→ where B do O′] ∈ SN , as needed.794

Q[p 7→ ∅], where O = ∅: this term is strongly normalizing by hypothesis.795

Q[p 7→ (where B do O1) ∪ (where B do O2)], where O = O1 ∪O2; for i = 1, 2, we prove796

Q[p 7→ Oi] ∈ SN and ν(Q[p 7→ Oi]) ≤ ν(Q[p 7→ O]) by Lemma 30, and we also note797

size(Oi) < size(O); then we can apply the IH to prove Q[p 7→ where B do Oi] ∈ SN ,798

which implies the thesis by Lemma 30.799

Q[p 7→
⋃

{where B do O1|x← O2}], whereO =
⋃

{O1|x← O2}; we takeQ′ = Q p©
⋃

{x← O2}800

and we have Q′[p 7→ where B do O1] = Q[p 7→
⋃

{where B do O1|x← O2}]; we thus801

note ν(Q′[p 7→ O1]) = ν(Q[p 7→
⋃

{O1|x← O2}]) = ν(Q[p 7→ O]), |Q′|p = |Q|p, and802

size(O1) < size(O), thus we can apply the IH to prove Q′[p 7→ where B do O1] ∈ SN , as803

needed.804

reductions within B or O make the induction metric smaller, thus follow immediately805

from the IH. J806
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