
A Core Calculus for Provenance Inspection

Wilmer Ricciotti
Laboratory for Foundations of Computer Science

University of Edinburgh
research@wilmer-ricciotti.net

August 17, 2017

Abstract

Recent research has been devoting increasing attention to provenance, or information describing the ori-
gin, derivation, and history of data, due to its relevance to critical issues including transparency, privacy, and
security. Engineering a software system to make it provenance-aware by means of ad-hoc instrumentation
requires a substantial effort: the development of general-purpose infrastructure is thus very important to
achieve the goal of making provenance widely available. In this article we describe a core functional lan-
guage equipped with a provenance-aware semantics that is sufficiently generic to accomodate many notions
of provenance proposed in the literature. While existing proposals typically treat provenance views and
provenance extraction as second-class, extralinguistic mechanisms, in our work provenance views are ex-
pressed as standard programs and provenance data can be reflected into the language, allowing for programs
that inspect their own provenance.

1 Introduction

Not all information can be trusted: we know from experience that some sources are unreliable; but even
trustworthy sources can make mistakes, which is why, to decide whether some information can be believed, we
need to consider how it was processed. This shows the importance of an accurate description of the origin,
history, and derivation of some information, which has been known for decades as provenance [20, 2], but
has clearly been studied by philosophers of knowledge for a much longer time. Provenance is essential to the
development of scientific knowledge: raw experimental data is useless without a thorough explanation of how it
was obtained, allowing the public to reproduce the experiment (at least in principle) and confirm it or contradict
it. Data collection and processing was originally a human activity (and scientists had to keep an accurate record
of it); by means of computer systems, it is now possible to process much greater quantities of data in an efficient
way.

Computer systems do not, however, provide the provenance of the data they process for free: propagating it
from the input to the output, while logging all intermediate operations, requires additional code; and more code
means not only more effort, but also more occasions to introduce bugs. For these reasons, a line of research has
devoted its attention to automated techniques to record provenance. Many of these techniques are designed to
be employed in interesting but restricted settings (especially scientific workflow computation [18, 4, 11, 21] and
databases [10, 13, 14, 3, 6]).

In a 2013 paper [1], Acar et al. have laid the basis for tracking provenance in a general-purpose programming
language, by proposing a core functional calculus (Transparent ML, or TML) equipped with a provenance
extraction framework. They provide a tracing big-step semantics, which records the history (or trace) of
computation; by analysing this trace, the extraction framework is able to “replay” the computation, while at
the same time propagating provenance annotations from the source expression to the final value. They show
that TML and its provenance framework are expressive enough to extract many forms of provenance.

Despite this, in TML provenance remains a second class citizen: the extraction framework is an external layer
combining several user-provided functions (provenance views) to process annotations and an execution trace
and return the provenance; neither the views, nor the annotations, nor the execution trace are expressed as
TML terms. Secondly, traces appear as an unneeded intermediate step, as the extraction framework is required
to replay them, essentially executing the program a second time. Furthermore, TML traces closely reflect the
big-step semantics of the language, limiting implementations to a call-by-value strategy and essentially requiring
provenance inspection to take place after the execution of the program, and making self-inspecting programs
impossible.

1

research@wilmer-ricciotti.net

1.1 Summary

We take inspiration from TML and develop a more tightly integrated provenance inspection calculus (PIC),
in which provenance is expressed as, and manipulated by first-class terms of the language. In this paper, we
provide the following contributions:

• a core functional calculus with special constructs to manipulate syntactic locations (represented as lists
of integers)

• language types for provenance labellings and provenance transducers together with a rich set of combina-
tors

• a small-step, traceless semantics associating to each computation step the corresponding provenance trans-
ducer

• a simplified framework to define provenance views as language expressions

• an inspection construct allowing reflective reasoning on provenance

Outline. Section 2 introduces some basic notions about provenance. The syntax and semantics of PIC is
introduced in Section 3, along with the provenance combinators. In Section 4 we provide a framework for the
simplified definition of provenance views. Section 5 integrates PIC with an inspection construct and discusses
the full language with an extensive example. Finally in Section 6 we draw conclusions and discuss future work.

2 Background

Provenance is most easily defined informally, as a form of metadata describing the origin or history of an artifact,
or the process by which it has been constructed. As soon as we try to make this concept more formal, we realize
that it depends on choices which are, to a certain degree, arbitrary: the origin of data can include an identifier
of the person or organization that provided it; a description of the technical equipment that produced it, along
with its accuracy; a timestamp; localization information from a GPS sensor; etc. Likewise, the computational
process manipulating data can be described with various levels of precision. Since the choice of provenance
information is largely a human task, we do not expect a single, universally acceptable notion of provenance.
It is however clear that any notion of provenance, to be mechanized, requires facilities to annotate input and
output data with metadata, along with a way to analyze the execution history of a software system.

The core calculus TML [1] provides a big-step tracing semantics, with evaluation judgments in the following
form:1

M ⇓ V, t
The judgment evaluates M and produces a result V and a trace t, which is a data structure describing the
computation that produced V (with a slight approximation, t can be considered a linearized version of the
evaluation tree). In this setting, the evaluation of an arithmetic expression N1 +N2 takes the following form:

N1 ⇓ 2, t1 N2 ⇓ 3, t2 +̂(2, 3) = 5

N1 +N2 ⇓ 5, t1 + t2

where t1 + t2 is the trace expressing the evaluation of a sum whose two arguments have histories described,
respectively, by t1 and t2, and +̂ is the meta-language sum. The evaluation of a larger term yields a more
complex trace:

N1 ⇓ 2, t1 N2 ⇓ 3, t2 +̂(2, 3) = 5

N1 +N2 ⇓ 5, t1 + t2 N3 ⇓ 1, t3
〈N1 +N2, N3〉 ⇓ 〈5, 1〉, 〈t1 + t2, t3〉

fst(〈N1 +N2, N3〉) ⇓ 5, fst(〈t1 + t2, t3〉)
TML provides a framework to extract various forms of provenance from traces: the user annotates the source

term with primitive provenance information and passes it, along with the execution trace, to a provenance view
which, basically, replays the computation while at the same time propagating the annotations. Views are
TML’s way of allowing a user to define several notions of provenance: if we annotate the original term as
fst(〈Na1

1 +Na2
2 , Na3

3 〉a4), and we want the provenance of the final value to reflect that of all the portions of the
input on which it depends (dependency provenance [9]), it is possible to define, by structural recursion on the
execution trace, a view that will return 5a1∪a2∪a4 . Notice that the framework is an external facility: annotations
do not have to be TML terms, and views are defined as set-theoretic functions (although it is implied that they
should be computable). Other forms of provenance that can be expressed in TML include:

1For simplicity, we omit evaluation environments.

2

Prim. types B ::= 1 |B |N | . . .
Types σ, τ ::= B | σ × τ | σ ⊃ τ | [σ] | ∼σ
Contexts Γ ::= [x1 : τ1, . . . , xn : τn]

Expressions L,M,N ::= c | x | M N | f(x).M | ⊕(
−→
M)

| • |∼M | ε |M #N | case M of π
|fst(M) | snd(M) | 〈M,N〉 | ρ(−→x .M)

Patterns π ::= {tt 7→M ; ff 7→ N}
|{• 7→M ;∼x 7→ N} | {ε 7→M ;x# y 7→ N}

Views F ::= 〈Mβ ,Mfst,Msnd,M•,M∼,
Mε,M#,Mtt,Mff,M⊕〉

Values U, V ::= c | x | • | ∼U | ε | U # V | 〈U, V 〉
| f(x).M | ρ(−→x .M)

Figure 1: Syntax of the language

• where-provenance [7], whose labels identify the input location from which each portion of an expression
was copied;

• expression provenance [1], whose labels are expression
graphs or trees describing how a value was computed in terms of primitive operations.

Motivated by the limitations of TML, we set out to embed the extraction framework into the language
itself: as we started investigating the issue of allowing provenance extraction within programs, we realized that
evaluating a sub-program to obtain its trace and then processing its trace with a provenance view, essentially
evaluating it a second time, made little sense; it should be possible to compute the provenance applying a
view immediately, without materializing the execution trace as an intermediate step. To accomplish this task,
we decided to replace traces with transducers, or functions that transform provenance according to a certain
execution history. A major obstacle in defining transducers is the need to undo the substitutions created by
the evaluation of functions or pattern matching: to address it, we equip the language with a special relocation
operator. One property of transducers is that they can be combined by functional composition to obtain the
transducer corresponding to express a transitivity rule. This allows us to adopt a small-step semantics, which
can be used to reason on the provenance of non-terminating programs.2

3 A provenance-aware calculus

We define the provenance inspection calculus PIC, a pure functional language equipped with a reduction se-
mantics and extended with facilities to annotate expressions with provenance and propagate it during the
computation. Its syntax, shown in Fig. 1, includes a standard type system, with primitive types B (e.g. the
singleton type 1, booleans B, and natural numbers N), pairs, functions, and lists and optional values on a base
type σ (respectively [σ] and ∼σ).

The definition of expressions is standard. We parametrize the syntax and semantics over primitive constants
c and primitive operations ⊕, whose arguments must be of primitive types. We assume constants and primi-
tive operations including booleans tt and ff, and natural numbers 0, 1, 2 . . ., along with standard arithmetic

operations and the equality test on natural numbers
?
=.

We fix a multi-sorted signature Σ, containing type declarations for constants (e.g.: c : σ) and primitive
operations (⊕ : −→τm ⊃ τ ′, where −→τm is a sequence of m types τ1, . . . , τm). Each operation symbol ⊕ be associated
to a metalanguage function ⊕̂ from values to values, expressing its semantics, thus defining an algebra for Σ.

Expressions f(x).M represent recursive functions f with formal argument x and body M , where both f and
x are bound in M ; non-recursive lambda-expressions λx.M are treated as recursive functions (x).M , under the
condition that the irrelevant function name is free in M .

For optional values and lists, we use the following notation: an expression of type ∼σ can be obtained either
by encapsulating some M of type σ using the syntax ∼M , or by means of the “none” constructor represented
by •; list constructors include the empty list ε and the cons operation M#N . For explicit lists, we will use the
notation [M1; . . . ;Mk], which is syntactic sugar for M1 # . . .#Mk # ε.

Two case analysis constructs are used to decompose lists and optional values; similarly, case analysis also
supports reasoning on booleans. We will allow ourselves to use an extended case analysis notation, which should

2A small-step semantics of TML was originally considered for this precise reason, but left for future work. In the words of
its proponents, “moving to a small-step semantics [seems] likely to complicate the trace semantics (and subsequent analysis)
considerably”.

3

be considered syntactic sugar:

case M of

{ε 7→ N1

; 1 # l1 7→ N2

; 2 # 1 # l2 7→ N3

; 7→ N4}

case M of

{ε 7→ N1

;h1 # l1 7→ case h
?
= 1 of

{tt 7→ N2

; ff 7→ case h1
?
= 2 of

{tt 7→ case l1 of

{ε 7→ N4

;h2 # l2 7→ case h1
?
= 2 of

{tt 7→ N3; ff 7→ N4}
}

; ff 7→ N4}
}
}

As an example, we can use recursion and case analysis to define a list map function of type (N ⊃ N) ⊃
[N] ⊃ [N] as follows:

map := λf.mapf (l).case l of
{ε 7→ ε
;h#t 7→ (f h)#(mapf t)}

The main feature of PIC is that its semantics is expressed by reduction judgments in the following form:

F `M T
↪−→ N

The intended reading is that M reduces to N ; additionally, F is a parameter describing a provenance view,
or a set of rules that express how the initial provenance data contributes to the final provenance, and T is a
provenance transducer, a normal language expression that, given provenance data for M , returns the provenance
for N .

The reduct N does not depend on the view F , therefore we will write M ↪→ N when we evaluate an
expression, but have no interest in its provenance; on the other hand, T is constructed based on the content of
F : thus different views will produce different transducers.

One last expression kind, which we introduce in this calculus, is the relocation ρ(−→x .M), of type [N] ⊃ [N].

This operation, which expresses a mapping from locations in a (simultaneously) substituted term M [
−→
N/−→x] to

locations in its components M,
−→
N , cannot be defined in terms of other language constructs and is thus taken

as primitive. Notice that, since this mapping depends on the syntactic structure of M , no evaluation can take
place within ρ.

3.1 Locations

To explain how relocations work, we need to formally describe what locations are and how they are manipulated
in our language. A syntactic location is an entity that can be used to denote a specific subexpression within a
larger language expression. We want to express provenance as a labelling, i.e. a function assigning a label to
each location in an expression; it should also be possible to represent such labellings as language expressions,
thus we need to provide a representation for locations as well.

We choose to represent syntactic locations by means of lists of natural numbers: given M , a list [n1, . . . , nk]
identifies one of its subexpressions N by means of the abstract syntax tree path leading to N from the root of
M ; each number ni in the list means that the next node in the path is the ni-th child of the current node; the
root location is represented by the empty list ε. For better clarity, we will write Loc rather than [N] when lists
of natural numbers are used as locations: this is just a presentational choice, and the two notations express the
same type.

locs(c) = locs(x) = locs(•) = locs(ε) = locs(ρ(−→x .M)) = {ε}
locs(f(x).M) = locs(fst(M)) = locs(snd(M)) = locs(∼M)

= {ε} ∪ (1 # locs(M))
locs(M N) = locs(〈M,N〉) = locs(M #N)

= {ε} ∪ (1 # locs(M)) ∪ (2 # locs(N))
locs(case M1 of { 7→M2; 7→M3}))

= {ε} ∪ (
⋃
i=1...3 i# locs(Mi))

locs(⊕(
−→
Mn)) = {ε} ∪ (

⋃
i=1...n i# locs(Mi))

4

where we have abused the cons notation to apply it to sets of terms S as follows:

n# S , {n#M : M ∈ S}

A lookup meta-operation M
∣∣
`

computes the subterm of M to which the location ` points; if, while scanning
M , the operation reaches a variable before consuming the whole location, it returns the variable together with
the remaining, unconsumed part of the location. The location lookup operation is defined in Fig. 2.

In all other cases, the location is inconsistent with the term being scanned and lookup is undefined.
Given a location `N valid for N , we can obtain the corresponding location ` valid for 〈M,N〉 as ` = 2 # `N .

More generally, given a composite n-ary expression k(M1, . . . ,Mn) = k(
−→
Mn), we can map locations for Mi into

locations for k(
−→
Mn) by means of a location injection ILocn.i = λ`. i # `. Dually, a location for k(

−→
Mn) can be

processed by case analysis as follows: we map the root location ε to a given N of type τ ; moreover, for each
i = 1, . . . , n, we provide a function pi from Loc to a fixed type τ which is used to map locations i # ` for the
i-th subexpressions to pi `. This case analysis, which we call location elimination, can be expressed as a term
of the language, which we will refer to as ELoc

n .

3.2 Labels and provenance labellings

A provenance labelling for an expression M is a function that maps all locations valid for M to expressions of
an arbitrary option type ∼τ , where • is taken to represent a default, non-informative label. We will denote the
type of τ -valued labellings by Provτ = Loc ⊃ ∼τ ; we will also allow ourselves to write Prov when the intended τ
is obvious. We will use the metavariables a and ã, possibly decorated with subscripts or superscripts, to denote
base labels and optional labels respectively. In general, we will define provenance labellings only for the locations
in locs(M), even though our type system does not guarantee that labellings will be applied consistently: we
assume that if a labelling is not explicitly defined for a location, it returns •. The default labelling λ .• will be
denoted by ⊥.

The labelling for a composite n-ary expression k(
−→
Mn) can be obtained by putting together labellings pi for

every sub-expression Mi, and providing an additional label a for the root. The corresponding n-ary labelling
injection operator IProvn has the same definition of the location elimination ELoc

n . Dually, a labelling for a

composite expression k(
−→
Mn) induces a projection labelling for each of its sub-expressions Mi. The labelling

projections EProv
n.i defined as λp.p ◦ ILocn.i compose a labelling for k(

−→
Mn) with the i-th injection.

3.3 Provenance transducers

The way a labelling is transformed by evaluation allows us to express different kinds of provenance, including
where-provenance, dependency provenance, and expression provenance: whenever an expression M reduces to
N , there should be a way to transform any labelling for M into a labelling for N . This transformation will be
expressed intra-linguistically, by means of functions of type Provτ ⊃ Provτ which we call provenance transducers;
this type will be also written Transτ for short. Rather than defining an ad-hoc transducer for each possible
reduction, which would be of little use, we will give rules to synthesize transducers based on the reduction
rules of the language: for example, we will have a transducer for the reduction of function application, two
transducers for the two reductions of case analysis over option types, and similarly two transducers for case
analysis over lists, etc.

In the special case of congruence rules, the corresponding transducer will not be provided by the user: the
language provides default transducers that reflect the administrative nature of these rules. For example, given
a transducer T for the reduction M ↪→ M ′, the transducer for the congruence reduction M N ↪→ M ′ N can
and should be obtained by lifting T .

x
∣∣
`

= x, ` M
∣∣
ε

= M, ε ⊕(
−→
Mn)

∣∣
i#`

= Mi

∣∣
`

(f(x).M)
∣∣
1#`

= M
∣∣
`

(M1 M2)
∣∣
i#`

= Mi

∣∣
`

〈M1,M2〉
∣∣
i#`

= Mi

∣∣
`

fst(M)
∣∣
1#`

= M
∣∣
`

snd(M)
∣∣
1#`

= M
∣∣
`

(∼M)
∣∣
1#`

= M
∣∣
`

(M1 #M2)
∣∣
i#`

= Mi

∣∣
`

case M1 of { 7→M2; 7→M3}
∣∣
i#`

= Mi

∣∣
`

Figure 2: Location lookup

5

Location injection: Loc ⊃ Loc
ILocn.i := λ`. i# ` (n is irrelevant)

Location elimination: (Loc ⊃ τ) ⊃ · · · ⊃ (Loc ⊃ τ) ⊃ τ ⊃ Loc ⊃ τ
ELoc
n := λp1, . . . , pn, a, `. case ` of {ε 7→ a; 1 # `′ 7→ p1 `

′; . . . ;n# `′ 7→ pn `
′}

Provenance injection: Provτ ⊃ · · · ⊃ Provτ ⊃ ∼τ ⊃ Provτ
IProvn := ELoc

n

Provenance projection: Provτ ⊃ Provτ
EProv
n.i := λp. p ◦ ILocn.i

Transducer congruence: Transτ ⊃ Transτ
In.i := λt, p. IProvn (EProv

n.1 p) · · · (EProv
n.(i−1) p) (t (EProv

n.i p)) (EProv
n.(i+1) p) · · · (E

Prov
n.n p) (p ε)

Figure 3: Definition of the provenance combinators

In general, given a reduction Mi ↪→M ′i and a corresponding transducer T , the transducer for the congruence
k(M1, . . . ,Mi, . . . ,Mn) ↪→ k(M1, . . . ,M

′
i , . . . ,Mn) must perform the following actions:

1. obtain a labelling p for the full unreduced expression;

2. apply labelling projections to obtain the labellings p1, . . . , pn for each of the sub-expressions M1, . . . ,Mn;

3. apply T to pi to obtain a labelling for M ′i ;

4. use the labelling injection IProvn to compose the new labelling for M ′i with the old labellings for the
unchanged Mj (j 6= i).

The above actions are expressed by the operator In.i (i-th transducer congruence of order n), defined in
terms of IProvn and EProv

n.j .
Fig. 3 summarizes the definition of location injections and elimination, labelling injection and projections,

and transducer congruences. We will refer to these operations, collectively, by the name of provenance combi-
nators.

3.4 Semantics

We now use the notions introduced in the previous sections to formally define a provenance-aware small-step

semantics: its rules are shown in Fig. 4. The reduction judgment F `M T
↪−→ N of provenance-aware semantics

involves a provenance transducer T , which has type Transτ for some τ , and relates the provenance of M to that
of N . As anticipated, some of the reduction rules make use of the relocation operator ρ(. . .): to understand
why, it is sufficient to see that a transducer ultimately needs to translate every location in the reduct into a
location in the redex. Sometimes this translation can be expressed as an elementary program: for instance,
when reducing a pair projection

fst 〈R,S〉 ↪→ R

a location ` for R corresponds to 1 # 1 # ` in fst 〈R,S〉. However, for reduction rules involving substitutions,
the correspondence is not so simple. In the case of a function application reduction

(f(x).M) N ↪→M [f(x).M,N/f, x]

the only way to map locations in the reduct to locations in the redex is by means of a structural analysis of the
expressions involved in the reduction, which is not allowed by standard language constructs. We thus extend
the language with relocation expressions ρ(−→x .M) which allow us to map redex locations to unreduced locations
by essentially “undoing” the substitution.

Relocation operations are functions with type Loc ⊃ Loc: when ρ(−→xn.M) is applied to a location ` in

locs(M [
−→
Nn/
−→xn]), it first computes the lookup M

∣∣
`
: if the lookup yields xi, `

′, for i = 1, . . . , n – i.e. one of
the variables declared by the relocation, together with an unconsumed location – `′ represents the path to the
subexpression of Ni which corresponds to location ` in the substituted expression; in this case, the relocation
maps ` to i# `′. If instead the lookup M

∣∣
`

returns another subterm of M together with ε, the relocation maps

` to (n + 1) # `; in all the other cases, ` is an invalid location for M [
−→
Nn/
−→xn], and we return a (meaningless)

default location ε.

6

Reduction rules

F ` (f(x).M) N
Fβ (β ρ(f,x.M))

↪−−−−−−−−−−→M [f(x).M,N/f, x] F ` ⊕(
−→
Vn)

F⊕
−→
Vn

↪−−−−→ ⊕̂(
−→
Vn)

F ` fst(〈M,N〉)
Ffst
↪−−→M F ` snd(〈M,N〉)

Fsnd
↪−−→ N

(tt 7→ N) ∈ m

F ` case ff of m
Ftt
↪−−→ N

(ff 7→ N) ∈ m

F ` case ff of m
Fff
↪−−→ N

(• 7→ N) ∈ m

F ` case • of m
F•
↪−→ N

(∼x 7→ N) ∈ m

F ` case ∼M of m
F∼ (β∼ ρ(x.N))
↪−−−−−−−−−−→ N [M/x]

(ε 7→ N) ∈ m

F ` case ε of m
Fε
↪−→ N

(h# t 7→ N) ∈ m

F ` case M1 #M2 of m
F# (β# ρ(h,t.N))

↪−−−−−−−−−−−→ N [M1,M2/h, t]

M
∣∣
`

= M ′, ε M ′ /∈ −→xn

F ` ρ(−→xn.M) `
λ .⊥
↪−−−→ (n+ 1) # `

M
∣∣
`

= xi, `
′ 1 ≤ i ≤ n

F ` ρ(−→xn.M) `
λ .⊥
↪−−−→ i# `′

M
∣∣
`

= N, `′ `′ 6= ε for all i s.t. 1 ≤ i ≤ n : N 6= xi

F ` ρ(−→xn.M) `
λ .⊥
↪−−−→ ε

Congruence rules

F `Mi
T
↪−→M ′i

F ` ⊕(
−→
Mn)

In.i T
↪−−−−→ ⊕(M1, . . . ,M

′
i , . . . ,Mn)

F `M T
↪−→M ′

F `M N
I2.1 T
↪−−−−→M ′ N

F ` N T
↪−→ N ′

F `M N
I2.2 T
↪−−−−→M N ′

F `M T
↪−→M ′

F ` 〈M,N〉
I2.1 T
↪−−−−→ 〈M ′, N〉

F ` N T
↪−→ N ′

F ` 〈M,N〉
I2.2 T
↪−−−−→ 〈M,N ′〉

F `M T
↪−→M ′

F ` fst(M)
I1.1 T
↪−−−−→ fst(M ′)

F `M T
↪−→M ′

F ` snd(M)
I1.1 T
↪−−−−→ snd(M ′)

F `M T
↪−→M ′

F ` case M of m
I3.1 T
↪−−−−→ case M ′ of m

Figure 4: Provenance-carrying semantics

Thanks to relocations, we can map the locations of a beta-reduced expression back to the original function
application. For instance, if ` ∈ locs(M [f(x).M,N/f, x]), ρ(f, x.M) ` will reduce to one among 1 # `1 (where
`1 ∈ locs(f(x).M)), 2 # `2 (where `2 ∈ locs(N), or 3 # `3 (where `3 ∈ locs(M)). Mapping these locations to
locations in locs((f(x).M) N) is then a matter of a simple case analysis, which we provide as a relocation helper
β (with type (Loc ⊃ Loc) ⊃ Loc ⊃ Loc):

β := λr, `.case r ` of {3 # `3 7→ 1 # 1 # `3; 7→ `}

Then for all N , the expression β ρ(f, x.M) maps locations in
locs(M [f(x).M,N/f, x]) to locations in locs((f(x).M) N).

Non-recursive function applications (λx.M) N ↪→ M [x 7→ N] are a special case of recursive functions, thus
the same operator can be used to express their relocation function as well.

The view F is, in essence, a collection of basic transducers that correspond to the basic reduction rules. This
is especially clear in the rules for the contraction of pair projections and the simpler forms of case reductions,
which simply return the transducers Ffst, Fsnd, F•, Fε, Ftt, and Fff. The reduction of primitive operations is
similar, save for the fact that we allow a transducer F⊕ to receive the actual arguments of ⊕ as parameters;
furthermore, notice that primitive operations only reduce when applied to values.

The rule for function application must express the propagation of provenance under substitution; this requires
us to produce a transducer capable of mapping locations in the substitution M [f(x).M,N/f, x] back to their
label in the unreduced application (f(x).M) N . To accomplish this task, Fβ will receive the relocation function
β ρ(f, x.M) as a parameter. Case analysis can reduce to substituted expressions as well, which explains why
F∼ and F# receive relocations β∼ ρ(x.N) and β# ρ(h, t.N) as parameters; the concrete definition of β∼ and

7

Expression typing

c : τ ∈ Σ
Γ ` c : τ

x : τ ∈ Γ
Γ ` x : τ

Γ `
−→
M : −→σ ⊕ : −→σ ⊃ τ ∈ Σ

Γ ` ⊕(
−→
M) : τ

Γ,−→x : −→σ `M : τ

Γ ` ρ(−→x .M) : Loc ⊃ Loc

Γ `M : σ Γ ` N : τ
Γ ` 〈M,N〉 : σ × τ

Γ `M : σ × τ
Γ ` fst(M) : σ

Γ `M : σ × τ
Γ ` snd(M) : τ

Γ, f : σ ⊃ τ, x : σ `M : τ

Γ ` f(x).M : σ ⊃ τ
Γ `M : σ ⊃ τ Γ ` N : σ

Γ `M N : τ
Γ `M : B Γ ` N : τ Γ ` R : τ
Γ ` case M of {tt 7→ N ; ff 7→ R} : τ

Γ ` • : ∼σ
Γ `M : σ

Γ ` ∼M : ∼σ
Γ `M : ∼σ Γ ` N : τ Γ, x : σ ` R : τ

Γ ` case M of {• 7→ N ;∼x 7→ R} : τ

Γ ` ε : [σ]

Γ `M : σ Γ ` N : [σ]

Γ `M #N : [σ]

Γ `M : [σ] Γ ` N : τ Γ, h : σ, t : [σ] ` R : τ

Γ ` case M of {ε 7→ N ;h# t 7→ R} : τ

Provenance view typing

for all κ: Γ ` Fκ : Tσ(κ)

Γ ` F : Tσ

Figure 5: Typing rules

Tσ(β) = (Loc ⊃ Loc) ⊃ Transσ

Tσ(∼) = (Loc ⊃ Loc) ⊃ Transσ

Tσ(#) = (Loc ⊃ Loc) ⊃ Transσ

Tσ(⊕) = −→τ ⊃ Transσ (if ⊕ : −→τ ⊃ τ ′ ∈ Σ)

Tσ() = Transσ

Figure 6: The type of views

β# should not be too surprising:

β∼ := λr, `.case r ` of

{1 # `1 7→ 1 # 1 # `1; 2 # `2 7→ 3 # `2; 7→ `}
β# := λr, `.case r ` of

{1 # `1 7→ 1 # 1 # `1; 2 # `2 7→ 1 # 2 # `2; 7→ `}

(notice that in β∼ the last branch of the case analysis can only be reached when ` is ε or an invalid location).
Finally, three rules define the computational behaviour of the relocator ρ. The first rule applies to locations

` that, within M [
−→
Nn/
−→xn], reference a proper subterm of M that is not one of the substituted variables: this is

converted to the location (n+ 1) # `. The second one explains what to do when the lookup of location ` within
M references the i-th substituted variable, possibly with an unconsumed `′ (which is a right-hand sublist of the
original `): the reduced expression is `′, prepended by the natural number i. Finally, the third rule provides
the evaluation of a relocation applied to an invalid location: this situation is meaningless, but we reduce to ε,
with no special meaning other than it being a canonical location.

Since relocations are usually tools to extract provenance, and not expressions whose provenance should be
extracted, for both reduction rules involving ρ we provide a forgetful transducer λ .⊥.

Congruence rules use the transducer congruences from Fig. 3. The generic form of a congruence is that of an
n-ary composite expression k(M1, . . . ,Mi, . . . ,Mn), which reduces to
k(M1, . . . ,M

′
i , . . . ,Mn) whenever Mi reduces to M ′i . Given a transducer T from Mi to M ′i we can obtain

the congruence transducer by means of the combinator In.i.

3.5 Type system

The type system of PIC (Fig. 5) is defined in a standard way. Aside from mentioning that it is parametric on the
signature Σ used to type constants and primitive operations, the only rule that deserves to be mentioned here
is the one concerning relocations. Relocations, which are functions from Loc to Loc, are well typed provided
that their argument is well-typed in a properly extended context.

8

Even though provenance views as such are not PIC-expressions, they are used in reductions and must be
well-typed to function properly. To typecheck a view, we use an auxiliary definition Tσ (Fig. 6): each of the
transducers Fκ within a view F must have type Tσ(κ), where σ is a type of provenance labels and κ identifies
one of the basic reduction rules. Each Tσ(κ) returns a provenance transducer of type Transσ, which may be
parametrized by a relocation (for κ = β,∼,#) or by the actual arguments of the primitive operation being
reduced (for κ = ⊕). Type-safety for PIC follows immediately.

Theorem 1 (Preservation and progress). 1. If Γ ` M : σ, Γ ` F : Tτ , and F ` M T
↪−→ M ′, then Γ ` M ′ : σ

and Γ ` T : Transτ .

2. If `M : σ and M is not a value, then for all F, τ s.t. ` F : Tτ , there exist T,M ′ such that F `M T
↪−→M ′.

4 Provenance views

The provenance-carrying semantics we defined allows us to choose a view F with great flexibility. Consider for
example the reduction:

F ` fst(〈M,N〉) Ffst
↪−−→M

Here, the transducer Ffst is allowed to transform the input labelling without any restriction: the most obvious
choice would be to propagate the labels of the first element of the source pair, but other choices are possible.
F could erase all labels, or add a static label to arbitrary subterms of M ; it could even provide a new labelling
of M using labels taken from N , even though N is not part of the reduced term. The only limitation is that
Ffst be a transducer expressible as a language function.

The generality with which provenance views can be defined is one of the strengths of our approach, but
it comes at a cost: views will usually be defined by pattern matching on locations, and the transducers for
function applications and case analysis will often have to use a relocation function explicitly, which is rather
cumbersome. For many of the notions of provenance we are interested in, such a generality is not needed and is
only an element of confusion. Consider, for example, a fst-projection labelled with three distinguished prove-
nance annotations in the form fst(〈M ã1 , N〉ã2)ã3 (for better readability, we represent provenance annotations
as superscripts, rather than providing an explicit function expression from locations to annotations). When
reducing the projection, we might want the outermost label of the reduced M to depend only on those ãi
(ignoring the annotations of N) and the inner subexpressions of M to keep the same labels that they had before
the reduction. In other words, we would like the labelling to be transformed as follows:

fst(〈M ã1 , N〉ã2)ã3 Mvfst ã3 ã1 ã2

where vfst is some expression with type ∼τ ⊃ ∼τ ⊃ ∼τ ⊃ ∼τ , for an annotation type ∼τ .
Similarly, when reducing ((f(x).M ã1)ã2 N ã3)ã4 , we often expect the reduced term to be, essentially, M ã1

where free occurrences of f and x have been replaced by (f(x).M ã1)ã2 and N ã3 ; the outermost label of the
reduced term could additionally depend on ã2 and ã4 (which annotate AST nodes that are destroyed by the
reduction). A transducer Fβ satisfying these conditions could be defined as:

λr, p, `. case ` of {ε 7→ vβ (p ε) (p [1]) (p (r ε)); 7→ p (r `)}

where vβ is an arbitrary term combining three annotations into one, (p ε) and (p [1]) return the annotations cor-
responding to ã4 and ã2 in the example. The argument r receives a relocation function in the form β ρ(f, x.M),
provided by the standard provenance-carrying semantics, which is used to retrieve the “natural” annotation
arising from the substitution of a labelled term into another labelled term.

These examples show that while manipulating raw provenance labellings is tricky, we can keep things simple
by providing functions like vfst and vβ , which combine a few distinguished annotations and propagate all the
others.

Based on this considerations, we provide the following lifting framework that lifts functions vκ on provenance
annotations to the corresponding provenance transducers Fκ:

9

Fβ(vβ) := λr, p, `. case ` of

{ε 7→ vβ (p ε) (p [1]) (p (r ε)); 7→ p (r `)}
Ffst(vfst) := λp, `. case ` of

{ε 7→ vfst (p ε) (p [1]) (p [1; 1]); 7→ p (1 # 1 # `)}
Fsnd(vsnd) := λp, `. case ` of

{ε 7→ vsnd (p ε) (p [1]) (p [1; 2]); 7→ p (1 # 2 # `)}
Ftt(vtt) := λp, `. case ` of

{ε 7→ vtt (p ε) (p [1]) (p [2]); 7→ p (2 # `)}
Fff(vff) := λp, `. case ` of

{ε 7→ vtt (p ε) (p [1]) (p [3]); 7→ p (3 # `)}
F•(v•) := λp, `. case ` of

{ε 7→ v• (p ε) (p [1]) (p [2]); 7→ p (2 # `)}
F∼(v∼) := λr, p, `. case ` of

{ε 7→ v∼ (p ε) (p [1]) (p (r ε)); 7→ p (r `)}
Fε(vε) := λp, `. case ` of

{ε 7→ vε (p ε) (p [1]) (p [2]); 7→ p (2 # `)}
F#(v#) := λr, p, `. case ` of

{ε 7→ v# (p ε) (p [1]) (p (r ε)); 7→ p (r `)}
F⊕(v⊕) := λ−→xn, p, `. case ` of

{ε 7→ v⊕
−→xn (p ε) (p [1]) (p [2]) · · · (p [n])

; 7→ ε}

F (v) := 〈Fβ(vβ), . . . , F⊕(v⊕)〉

4.1 Where-provenance

Using the lifting framework, we define a where-provenance view W by means of label-propagating transducers.
The view can use any optional type of labels ∼τ . When a reduction copies certain data, the corresponding
transducer will propagate the provenance annotations along with the data; when a reduction transforms the
term beyond recognizability (for example, when reducing primitive operations), there is no label to propagate,
therefore the corresponding transducer will produce the default, uninformative label •.

w⊕ := λ−→xn, ã,
−→
ãn.•

wκ := λ , , ã.ã (κ 6= ⊕)

W := F (w)

Example 1. Let f := λx, y.case x
?
= y of {tt 7→ x; ff 7→ y + 1}. We map f 2 to a list [1; 2; 3]:

map (f 2)[1; 2; 3]
∗
↪→ [2; 2; 4]

Now consider the following provenance labelling L assigning annotations ã, ã1, ã2, ã3 as follows:

map (f 2ã) [1ã1 ; 2ã2 ; 3ã3]

(subexpressions without an annotation are considered to labelled by •). A where-provenance reduction acts as
follows:

map (f 2ã) [1ã1 ; 2ã2 ; 3ã3]
∗
↪→ [2; 2ã; 4]

In the output list, only the second element is annotated with a, meaning that it was copied from the argument
of f ; the other two elements were not copied, but obtained by incrementing previous values in the same position,
and thus receive the • annotation.

10

As a general rule, after each execution step we expect subexpressions labelled with ∼a to be copied from parts
of the original expression having the same label. The actual well-behavedness property of where-provenance, in
our setting, is less näıve than that: consider the reduction

(λx.(λy.(x y)a)) N ↪→ λy.(N y)a

The subexpression (N y) is indeed derived from the similarly labelled (x y), but the two are only equal up to
the substitution [N/x]. The relation between the two expressions can be made formal:

Definition 1. M v N ⇐⇒ ∃s.M [s]
∗
↪→ N , where s is a substitution.

Lemma 1. 1. v is an order relation;

2. if M v N and N
∗
↪→ R, then M v R.

We can then prove that W satisfies the following well-behavedness property of where-provenance:

Theorem 2 (well-behavedness of W). Suppose W ` M T
↪−→ N : then for all labellings L and ` ∈ locs(N), if

T L ` ∼a, there exists `′ ∈ locs(M) such that L `′ ∼a and M
∣∣
`′
v N

∣∣
`
.

4.2 Expression provenance

To define expression provenance, we allow provenance labels to be simplified syntax trees with constants or
primitive annotations as leaves and primitive operation symbols as inner nodes. More formally, we assume a
type of labels τ containing the following elements:

a ::= b̄ | kc | k⊕(−→an)

where b belongs to a type of basic annotations τb, and kc and k⊕, defined for all constants c and all n-ary basic
operations ⊕, are reified representations of language expressions. As usual, τ will be wrapped in an optional
type ∼τ .

Accordingly, a numeric value, say 2, could have several possible labels: a label ∼b̄ means that 2 was copied
from a part of the input with the same label; a label ∼k+(a1, a2) means it was obtained by adding together
two values originally labelled with ∼a1 and ∼a2; the label •, as usual, provides no information; finally the label
∼k2, merely indicates a literal 2, but does not specify its provenance otherwise, therefore it can be considered
a variant of •.

The expression provenance view can be defined by means of a simple variation on where-provenance. The
only transducer that needs a different definition, unsurprisingly, is the one associated with the evaluation of
primitive operations (e⊕):

e⊕ := λ−→xn, ã,
−→
ãn.k⊕(

−−−−→
ãn ∗ xn)

eκ := λ , , ã.ã (κ 6= ⊕)

E := F (e)

In the definition, we use the following ∗ operation:

(ã) ∗ x =

{
∼kx if ã = •
ã else

where kx is the label corresponding to the constant x (remember that primitive operations are reduced when
applied to constants, thus we must have x = c for some c). This allows us to conjure an informative annotation
for constants that have not been given a provenance.

Example 2. We start with the same labelling as in the where-provenance example:

map (f 2ã) [1ã1 ; 2ã2 ; 3ã3]

If we evaluate the term according to expression provenance, we obtain the following labelled value:

[2k+(ã1,k1); 2ã; 4k+(ã3,k1)]

Just like in where-provenance, 2ã indicates a term that was copied from the input; the term 2k+(ã1,k1), instead,
has been obtained by adding together 1ã1 and an unannotated literal 1.

11

Expression provenance annotations should allow us to recompute the annotated expression. To make this
formal, let us consider metalanguage functions h mapping basic annotation values in τb to arbitrary language
values. We then define the extension of such an h to full annotations as the metalanguage function ĥ mapping
values in τ to arbitrary language values, as follows:

ĥ(b̄) = h(b)

ĥ(kc) = c

ĥ(k⊕(ã1, . . . , ãn)) = ⊕̂(ĥ(ã1), . . . , ĥ(ãn))

We then introduce consistent mappings (a modified version of the analogous concept used in [1]) as those
functions h which agree with a certain annotated expression.

Definition 2. Let M be a term, and L a provenance labelling for M of type Loc ⊃ ∼τ . We say that h is a
consistent mapping for L . M (and write h L . M) if and only if for all ` ∈ locs(M) there exist an annotation

ã such that L ` ã and, if ã = ∼a′, then ĥ(a′) vM
∣∣
`
.

Finally, we prove that reduction under the view E preserves consistent mappings.

Theorem 3 (well-behavedness of E). If h L . M and E `M T
↪−→ N , then h T L . N .

4.3 Dependency provenance

Dependency provenance associates to each expression location an annotation containing a set of labels. A
full definition of dependency provenance would therefore require us to encode sets as a type of the language,
providing at the same time an implementation of standard set operations. We could for example use the list
encoding of sets, which is a simple programming exercise; for the purposes of this paper, we will abstract
from the actual definition of the type of dependency annotations, assuming that a sound implementation of set
operations like union and membership test exists. In particular, we assume that the default annotation • be
interpreted as the empty set of labels ∅ rather than the “none” optional value.

The dependency view then merely amounts to taking the union of all the dependency sets involved in a
reduction:

d⊕ := λ−→xn,
−−→
ãn+1.

⋃−−→
ãn+1

dκ := λã1, ã2, ã3.ã1 ∪ ã2 ∪ ã3 (κ 6= ⊕)

D := F (d)

Example 3. We adapt our example to dependency provenance by extending the language of provenance labels
to accept sets of annotations:

map 〈f 2{a}, [1{a1}; 2{a2}; 3{a3}]〉

(where subexpressions without an annotation are considered to labelled by ∅). After evaluation, we get the
following dependency provenance labelling:

[2{a1,a}; 2{a2,a}; 4{a3,a}]

The new labelling reflects the fact that each element of the list depends from both the corresponding element
in the source list, and the argument to the function f .

To state the well-behavedness property for the view D we use a relation L . M ≈a L′ . M ′ that holds
when the annotated terms L . M and L′ . M ′ are quasi-equal, up to subterms annotated with a label a (e.g.
〈1, 2S〉 ≈a 〈1, 3S

′〉 provided that a ∈ S ∩ S ′). The idea is that, if starting with L . M we perform a reduction

step D ` M T
↪−→ N whose redex is entirely guarded by the label a, we obtain a term that is still quasi-equal

to L′ . M ′. If instead the redex is not guarded by a, then we can find a reduction D ` M ′ T ′

↪−→ N ′ such that
T L . N ≈a T ′ L′ . N ′.

To indicate reductions guarded and not guarded by an annotation, we use the notation:

D ` (L . M)
T
↪−→a N

D ` (L . M)
T
↪−→ā N

(a formal definition is given in the appendix).

12

Expressions L,M,N ::= . . . | ι(F,L . M)
Views F ::= 〈Mβ ,Mfst,Msnd,M•,M∼,

Mε,M#,M⊕,Mι〉
locs(ι(F,L . M)) = {ε}

G `M T
↪−→ N

F ` ι(G,L . M)
I
↪−→ ι(G,T L . N)

FV(V) = ∅

F ` ι(G,L . V)
Fι
↪−→ 〈V,L〉

Γ ` F : Tσ Γ ` L : Provσ Γ `M : τ

Γ ` ι(F,L . M) : τ × Provσ

Tσ(ι) = Transσ
F (vι) = λp, `.case ` of {ε 7→ vι (p ε); 7→ •}

Figure 7: Syntax, semantics, and typing of inspection

Theorem 4 (well-behavedness of D). Suppose L . M ≈a L′ . M ′. Then:

1. If D ` (L . M)
T
↪−→a N , we have T L . N ≈a L′ . M ′.

2. If D ` (L . M)
T
↪−→ā N , there exist T ′, N ′ such that D `M ′ T ′

↪−→ N ′ and T L . N ≈a T ′ L′. . N ′.

Admittedly, this property is weaker than the dependency-correctness of [9], as we do not consider redexes
that are partially guarded by a, such as (f(x).M){a} N . We believe that full dependency-correctness also holds,
but cannot be proved without resorting to a more complex argument involving well-typedness; we thus leave
this proof as future work.

5 Self-inspection

The language described in Section 3, together with the view definition framework of Section 4, can be compared
to TML. Although we have simplified the type system by renouncing to recursive types, the two languages are
quite similar; the provenance extraction framework can also be compared to our view definition framework.
Our approach, however, does provide a few enhancements:

• our small-step semantics is not limited to call-by-value evaluation, like their big-step definition, but acco-
modates a variety of evaluation strategies;

• provenance views and provenance data are expressed in the same language as the programs whose prove-
nance is being considered;

• in our language, we need not take the extra step of materializing the execution trace of a program before
extracting its provenance;

• as a consequence, to compute the provenance of a program we do not have to replay its execution trace.

The most important reason why these features matter is that they make it possible for our language to be
extended with an introspective inspection operation, which we will denote by the following syntax:

ι(F,LM . M)

The intended semantics of inspections, informally, is that M will be evaluated to V ; at the same time, the
provenance view F will be applied to LM to obtain a new labelling LV for V ; finally, evaluation will produce
the pair 〈V,LV 〉, making both the value and its provenance available for the rest of the program.

Provenance inspection is introduced by means of the extension described in Figure 7. From the point of
view of location lookup, inspections are treated like opaque boxes: the locs operation only returns the singleton
{ε} when applied to an inspection, so access to its syntactic subterms is not allowed.

The typing rule checks that the type of the provenance view F agree with that of the provenance labelling
L; the term under inspection can be of any type.

Two different reduction rules are applied depending on whether the term under inspection has been fully
evaluated or not. When the term M under inspection is not a value, it can be reduced to N , by means of the

13

first reduction rule, using the view G specified by the inspection; this returns a transducer T that we apply to
the initial provenance labelling L to obtain a new labelling T L suitable for N .

When, after a certain number n of reduction steps, the inspected term becomes a value V , with a certain
provenance
L′ = Tn (Tn−1 · · · (T0 L) · · ·); then the inspection can be concluded by a final step, using the second rule,
which merely returns the value V together with its labelling L′. The premise requiring that V should be a
closed term is needed because free variables might be replaced by any expression, including expressions contain-
ing redexes, and in such a case the inspection should continue; however, since we do not allow reduction inside
binders, this check is only necessary if we are interested in evaluating open terms.

Unlike TML, the syntax of PIC allows free nesting of provenance inspections. For this reason we also need
to explain what an external observer can see when an inspection is performed. Here we need to make a choice
and decide whether inner reductions can be observed or not. Since inspections come with a local provenance
labelling, they cannot be easily reconciled with a non-local provenance view; then the simplest policy, which we
adopt, is to make inner reductions not observable: this is obtained by returning the identity I = λx.x as the
transducer for inner reductions. The final inspection step, instead, can be observed: it employs the transducer
Fι, which is defined in the outer view F .

The presence of nested inspections has implications for privacy and confidentiality: on one hand, inner
inspections decide whether to share provenance information with external observers, and to what extent; on
the other hand, the external observer is aware of hidden computations thanks to the transducer Fι. This
interaction is not unexpected: implications of provenance for confidentiality, privacy, availability, and other
security properties have been investigated by some previous work ([8, 5, 12, 16]). We will now elaborate further
by considering an example of security application.

5.1 Example: inspection of dynamic linking

In the previous sections we have discussed provenance as a property of data, and how it evolves during the
execution of a program, but we have not provided concrete examples of how provenance can be used in a
concrete setting.

We will here provide a demonstration of how provenance can be used to detect possible security issues. Our
example considers dynamic linking, a technique widely available in modern operating systems, which allows the
linking of object code from several sources to happen at load time (or in certain cases at run time), rather than
compile time. When an executable file is built from source code containing references to functions defined in
a shared (or dynamic-link) library, those references remain unresolved; instead, special directives are added to
the executable file header, including a record of the required library functions (sometimes called import table).
When loading the executable file, the operating system is expected to find the required shared libraries and
load them into memory beside the program code, and link the two by resolving the function references declared
in the import table.

Dynamic linking allows a system to avoid duplication of frequently used code, both on disk and in RAM
(when two processes using the same library are running concurrently, the memory image of the library can be
shared across the two addressing spaces by means of paging). While 30 years ago programs usually employed less
than 5 dynamic-link libraries, today’s software systems can require several even hundreds of libraries provided
by different developers. Libraries from trusted sources may coexist with libraries from untrusted sources, and
they may use each other’s services.

To model a simple dynamic linker, we assume a type [N] ⊃ N for shared library functions – an acceptable
assumption, given that executable file formats often enforce a loose or trivial typing discipline for these functions.
A store of type [id× ([N] ⊃ N)] associates function identifiers to the corresponding shared function.

A program comprises executable code, which we model as a function of type [[N] ⊃ N] ⊃ [N] ⊃ N, and an
import table, which in our setting is simply a list of identifiers of shared functions that should be loaded. The
code receives as its first parameter a list of concrete functions matching the imported identifiers from import
table, while the second argument must be a list of input parameters for the program; at the end, a natural
number is returned.

The goal of the dynamic linker is to serve the list of imported functions to the program code. If the store
and the import table are both ordered by increasing values of identifiers, this can be achieved by the following
procedure:

dynalink := λstore, code, imptab.

let imps := filter map (λ〈x, f〉.x ∈ imptab) (λ〈x, f〉.f) store

in code imps

where filter map p f l ignores the elements of the list l that do not satisfy the predicate p, but is otherwise
the same as map f l.

14

We now consider a toy program whose purpose is to store passwords to permanent memory. The program
employs salt and a hash function to make dictionary attacks unfeasible in case a malicious agent gained access
to the password file:

savepw :=λimps, pw.

let salt := $RND [] in

$WRITE [salt];

$WRITE [$HASH [(salt‖pw)]]

where the semi-colon is a binary operator on natural numbers simply returning the second argument, and ‖
combines two natural numbers into one, for example by concatenating their bit representations, or by means of
Cantor’s encoding of pairs. HASH, RND, and WRITE are identifiers for three imported functions: the import table
for savepw is thus the following:

[HASH; RND; WRITE]

Finally, we write $ID as syntactic sugar for an imported function call; concretely, this involves a lookup by
ordinal number in the import list imps: e.g $WRITE = nth imps 2 (where nth returns the element of a list
referred to by a zero-based index).

Suppose that we do not have access to the source code of savepw: we can still read its import table and see
that the program requires the use of a cryptographic hash function, a random number generator, and persistent
storage. This is not suspicious, but for increased trust we may want to inspect the operation of savepw and
verify that only a properly encrypted password has been stored.

For this purpose, we use the following provenance label type:

∼label ::= • | ∼private | ∼random | ∼rndpriv | ∼breach
| ∼standard | ∼unsafe | ∼oneway

The first four labels are used to express the provenance of data: the default • labels data that is public or
irrelevant as far as confidentiality goes; data labelled by ∼private, on the contrary, is confidential; ∼random is
used for non-private data coming from a random source; finally, ∼rndpriv labels data containing both private
and random information. A label ∼breach, also used to annotate data, is only generated when a potential
security breach is detected.

The last three labels are used to annotate functions:

• ∼standard is used for pure functions that manipulate the input in an unknown way; they can throw away
part of the input, but may not create private data out of thin air: since the randomized part of the input
may not be preserved, this label combines with labelled data as follows

∼standard(•) = •
∼standard(∼random) = •
∼standard(∼private) = ∼private
∼standard(∼rndpriv) = ∼private
∼standard(∼breach) = ∼breach

• ∼unsafe annotates functions that should not receive private data, because they contain untrusted code
with side effects (e.g. writing to disk, sending data over a network, displaying information on a terminal):
it behaves as follows

∼unsafe(•) = •
∼unsafe(∼random) = •
∼unsafe(∼private) = ∼breach
∼unsafe(∼rndpriv) = ∼breach
∼unsafe(∼breach) = ∼breach

• ∼oneway is similar to standard but is used with functions known to be one-way ; thus when applied to
randomized private data, it produces non-confidential output:

∼oneway(•) = • ∼oneway(∼random) = •
∼oneway(∼private) = ∼private ∼oneway(∼rndpriv) = •
∼oneway(∼breach) = ∼breach

15

This annotation propagation policy can be implemented as a provenance view S. The labelling Lstore for the
shared library functions will usually be fixed, and we assume that the concrete functions hash, rnd, write are
labelled by oneway, random, unsafe. Given the password pw (which, for simplicity, will be a natural number),
we make it confidential by defining its labelling as

Lpw := λ`.case ` of {ε 7→ ∼private; 7→ •}

As previously mentioned, an outer inspection cannot see what happens within an inner one, so an additional
task of S, besides propagating annotations, is to flag inner inspections as possible security breaches, by means
of the transducer

Sι := λ , .breach

Now we can apply the dynamic linker to savepw and try running it by means of the syntax:

M = dynalink store savepw [HASH; RND; WRITE] pw

where the provenance labelling for M can be obtained by combining Lstore, Lpw, and trivial labellings for all
the other parts of M :

L = IProv2 (IProv2 (IProv2 (IProv2 ⊥ Lstore •) ⊥ •) ⊥ •) Lpw •

Finally, we perform an inspection:

ι(S,L . M)
∗
↪→ 〈0, L′〉

where 0 is the value returned by the call to WRITE, and L′ ε
∗
↪→ ∼public confirms that no security breaches

were detected.

6 Conclusions

The language PIC that we have described in this paper represents provenance by means of labelling functions.
This seems to be a natural approach in a calculus allowing provenance to be manipulated as a first-class
expression because in this way all the provenance annotations for the same term are gathered in the same place.
Other approaches based on annotation propagation would scatter this information across various subterms, and
would thus require additional effort to extract the provenance and separate it from the term it describes.

Provenance as labelling functions also seems to have a relatively elegant, albeit slightly low-level, theory
of combinators, which guides the definition of the provenance-aware semantics. Although defining provenance
views by combining annotations locally (as in TML) is simpler than doing so by handling whole labellings (as
required by our semantics), we have provided a simplified framework to bridge this gap.

Although PIC is a pure functional language, we envision extending it with imperative constructs such as
references and exceptions. Experience in the related area of program slicing ([19]) tells us that such an extension
would not be straightforward, but might provide a good starting point.

We have chosen to make provenance inspection local: an outer inspection cannot observe the computation
happening within an inner inspection; this ensures a certain confidentiality of metadata, which cannot be
shared by accident with the public. However, this is not the only possible way to handle nested inspections: a
transparent provenance inspection could also be defined using the following evaluation rule:

G `M
G[R]
↪−−−→ N

F ` ι(G,L . M)
I1.1 (F [R])
↪−−−−−−−→ ι(G,T L . N)

where R identifies the reduction rule used in the premise, and F [R] returns the trasducer for rule R according
to the view F : this allows reduction within ι to be treated like any other congruence. Apart from a slight
notational complication, this extension appears straightforward.

Another possibility, given ι(G,L . M) is to make M invisible to an external observer, but to allow an outer
inspection to provide a labelling for G and L. Indeed, since a provenance view contains standard language
functions, it needs not be statically determined: it is perfectly admissible to receive provenance transducers as
the arguments of a program, and use them to construct a view to be used in an inspection. In other words,
views may have a non-trivial provenance, which could provide a reason to inspect the provenance of provenance.
This concept appears not to be entirely new (see e.g. [15, 17]); further investigation of relations between nested
inspections and provenance of provenance will be the subject of future work.

16

References

[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A core calculus for provenance. Journal of Computer
Security, 21:919–969, 2013.

[2] David A. Bearman. The power of the principle of provenance. Archivaria, 21:1427, 1985.

[3] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. An annotation man-
agement system for relational databases. VLDB Journal, 14(4):373–396, 2005.

[4] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a survey. ACM Comput.
Surv., 37(1):1–28, 2005.

[5] Uri Braun, Avraham Shinnar, and Margo I. Seltzer. Securing provenance. In HotSec, 2008.

[6] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness of implicit provenance in
query and update languages. ACM Transactions on Database Systems, 33(4):28, November 2008.

[7] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A characterization of data
provenance. In ICDT, number 1973 in LNCS, pages 316–330, 2001.

[8] J. Cheney. A formal framework for provenance security. In Proceedings of the 24th IEEE Computer Security
Foundations Symposium (CSF), pages 281–293. IEEE, 2011.

[9] James Cheney, Amal Ahmed, and Umut a. Acar. Provenance as dependency analysis. Mathematical.
Structures in Comp. Sci., 21(6):1301–1337, December 2011.

[10] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view data in a warehousing
environment. ACM Trans. Database Syst., 25(2):179–227, 2000.

[11] Susan B. Davidson and Juliana Freire. Provenance and scientific workflows: Challenges and opportunities.
In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 1345–1350, New York, NY, USA, 2008. ACM.

[12] Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, and Sarah Cohen Boulakia. Privacy issues in scientific
workflow provenance. In Proceedings of the 1st International Workshop on Workflow Approaches to New
Data-centric Science, Wands ’10, pages 3:1–3:6, New York, NY, USA, 2010. ACM.

[13] Boris Glavic and Gustavo Alonso. Provenance for nested subqueries. In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database Technology, EDBT ’09, pages 982–
993, New York, NY, USA, 2009. ACM.

[14] Boris Glavic, Renée J. Miller, and Gustavo Alonso. Using sql for efficient generation and querying of
provenance information. In In Search of Elegance in the Theory and Practice of Computation, pages
291–320, 2013.

[15] Kwan Hee Han, Seock Kyu Yoo, and Bohyun Kim. Qualitative and quantitative analysis of workflows
based on the uml activity diagram and petri net. WSEAS Trans. Info. Sci. and App., 6(7):1249–1258, July
2009.

[16] Ragib Hasan, Radu Sion, and Marianne Winslett. Introducing secure provenance: Problems and challenges.
In Proceedings of the 2007 ACM Workshop on Storage Security and Survivability, StorageSS ’07, pages 13–
18, New York, NY, USA, 2007. ACM.

[17] Zachary Hensley, Jibonananda Sanyal, and Joshua New. Provenance in sensor data management. Queue,
11(12):50:50–50:63, December 2013.

[18] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz, and Jan Van den Bussche. A formal
model of dataflow repositories. In Proceedings of the 4th International Conference on Data Integration in
the Life Sciences, DILS’07, pages 105–121, Berlin, Heidelberg, 2007. Springer-Verlag.

[19] Wilmer Ricciotti, Jan Stolarek, Roly Perera, and James Cheney. Imperative functional programs that
explain their work. In ICFP 2017, 2017. In press.

[20] T. R. Schellenberg. The principle of provenance and modern records in the united states. The American
Archivist, 28(1):39–41, 1965.

[21] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A survey of data provenance in e-science. SIGMOD
Record, 34(3):31–36, 2005.

17

A Proofs

Lemma 2. For all ` ∈ locs(R[
−→
Mn/

−→xn]) (where the xi are distinct), one of the following holds:

• R
∣∣
`

= xi, `
′ and R[

−→
Mn/

−→xn]
∣∣
`

= Mi

∣∣
`′

, for some `′ ∈ locs(Mi)

• R
∣∣
`

= R′, ε and R[
−→
Mn/

−→xn]
∣∣
`

= R′[
−→
Mn/

−→xn], ε, for some R′.

Proof. By structural induction on R, followed by a case analysis on ` ∈ locs(R[
−→
Mn/

−→xn]). For the recursive cases,
we only consider functions, but the other cases are similar.

• R = xi
then ` ∈ locs(Mi) and R

∣∣
`

= xi
∣∣
`

= x, `. We complete the proof by proving xi[
−→
Mn/

−→xn]
∣∣
`

= Mi

∣∣
`
, which is

trivial by definition of substitution.

• R = y /∈ −→xn
then ` ∈ locs(y), which implies ` = ε and R

∣∣
`

= y
∣∣
ε

= y, ε. Finally, y[
−→
Mn/

−→xn]
∣∣
ε

= y[
−→
Mn/

−→xn], ε, which
completes the proof.

• R = g(y).S, where g, y#−→xn,
−→
Mn

then ` = ε or ` = 1.`1, where `1 ∈ locs(S[
−→
Mn/

−→xn]). In the first case, we have g(y).S
∣∣
ε

= g(y).S, ε and

(g(y).S)[
−→
M/−→xn]

∣∣
ε

= (g(y).S)[
−→
Mn/

−→xn], ε, which proves the thesis. In the other case, g(y).S
∣∣
1.`1

= S
∣∣
`1

and

(g(y).S)[
−→
Mn/

−→xn]
∣∣
1.`1

= S[
−→
Mn/

−→xn]
∣∣
`1

, and the thesis follows by induction hypothesis.

Lemma 3. For all ` ∈ locs(M [f(x).M,N/f, x]), there exists `′ ∈ locs(f(x).M) N such that β ρ(f, x.M) ` ↪→ `′

and (f(x).M) N
∣∣
`′
vM [f(x).M,N/f, x]

∣∣
`
.

Proof. By cases on M
∣∣
`
, using Lemma 2, we get three cases:

• M
∣∣
`

= f, `1, M [f(x).M,N/f, x]
∣∣
`

= f(x).M
∣∣
`1

, and

`1 ∈ locs(f(x).M): we easily prove that β ρ(f, x.M) `
∗
↪→ 1 # `1 and (f(x).M) N

∣∣
1#`1

= f(x).M
∣∣
`1

=

M [f(x).M,N/f, x]
∣∣
`
, thus a fortiori (f(x).M) N

∣∣
1#`1

vM [f(x).M,N/f, x]
∣∣
`
.

• M
∣∣
`

= x, `1, M [f(x).M,N/f, x]
∣∣
`

= N
∣∣
`1

, and `1 ∈ locs(N): we easily prove that β ρ(f, x.M) `
∗
↪→ 2 # `1

and
(f(x).M) N

∣∣
2#`1

= N
∣∣
`1

= M [f(x).M,N/f, x]
∣∣
`
, thus a fortiori (f(x).M) N

∣∣
2.`1
vM [f(x).M,N/f, x]

∣∣
`
.

• M [f(x).M,N/f, x]
∣∣
`

= M ′[f(x).M,N/f, x], ε and M
∣∣
`

= M ′, ε: we easily prove that β ρ(f, x.M) `
∗
↪→ 1#

1 # `, (f(x).M) N
∣∣
1.1.`

= M ′, ε, and M [f(x).M,N/f, x]
∣∣
`

=
M ′[f(x).M,N/f, x], ε; consequently M ′ v
M ′[f(x).M,N/f, x], which proves the thesis.

Lemma 4. For all ` ∈ locs(N [M/x]), there exists

`′ ∈ locs(case ∼M of m) such that β∼ ρ(x.N) `
∗
↪→ `′ and, if ∼x 7→ N ∈ m, then case ∼M of m

∣∣
`′
v

N [M/x]
∣∣
`
.

For all ` ∈ locs(N [M1,M2/x, y]), there exists

`′ ∈ locs(caseM1 #M2) ofm) such that β# ρ(x.N) `
∗
↪→ `′ and, if x#y 7→ N ∈ m, then case M1 #M2 of m

∣∣
`′
v

N [M1,M2/x, y]
∣∣
`
.

Proof. Follows the same principle as Lemma 3.

Lemma 5. Assume that for all `1 ∈ locs(M ′) and for all J there exists `2 ∈ locs(M) s.t. T J `1
∗
↪→ J `2 and

M
∣∣
`2
vM ′

∣∣
`1

. Then for all `1 ∈ locs(M ′ N) and for all J there exists `2 ∈ locs(M N) s.t. I2.1 T J `′1 J `′2
and M N

∣∣
`2
vM ′ N

∣∣
`1

.

Lemma 6. If h L . R S, then h L ◦ ILoc2.1 . R.

18

Proof of Theorem 2 Suppose W `M T
↪−→ N : then for all labellings L and ` ∈ locs(N), if T L `

∗
↪→ ∼a, there

exists `′ such that L `′ ∼a and M
∣∣
`′
v N

∣∣
`
.

Proof. By induction on the derivation of W `M T
↪−→ N . We consider only some of the rules, but the full proof

can be obtained following the same approach.

• W ` (f(x).R) S
Wβ (β ρ(f,x.R))
↪−−−−−−−−−−→ R[f(x).R, S/f, x]

we have

Wβ (β ρ(f, x.R)) J `
∗
↪→

case ` of

{ε 7→ wβ (J ε) (J [1]) (J (β ρ(f, x.R) ε))

; 7→ J (β ρ(f, x.R) `)}

and by cases on ` we prove that this reduces to

J (β ρ(f, x.R) `); by Lemma 3 we obtain `′ such that J (β ρ(f, x.R) `)
∗
↪→ J `′ and (f(x).R) S

∣∣
`′
v

R[f(x).R, S/f, x]
∣∣
`
, which proves the thesis.

• W ` ⊕(
−→
Vn)

W⊕
−→
Vn

↪−−−−→ ⊕̂(
−→
Vn)

` ∈ locs(⊕̂(
−→
Vn)) means ` = ε, thus we have W⊕

−→
Vn J ε

∗
↪→ w⊕

−→
Vn (
−−→
J [i])i=1...n) (J ε). Since this term only

reduces to •, we have nothing to prove.

• W ` fst(〈R,S〉) Wfst
↪−−−→ R

by a simple case analysis on ` we obtain Wfst J `
∗
↪→ J (1 # 1 # `); then we take `′ = 1 # 1 # ` and prove

fst〈R,S〉
∣∣
1#1#`

= R
∣∣
`
, thus the thesis holds.

• W ` case (R1 #R2) of m
W# (β# ρ(x,y.S))
↪−−−−−−−−−−−−→ S[R1, R2/x, y], where (x, y 7→ S) ∈ m

by cases on ` we show W# (β# ρ(x, y.S)) J `
∗
↪→

J (β# ρ(x, y.S)) `); we use Lemma 4 to obtain `′ such that β# ρ(x, y.S) `
∗
↪→ `′ and case (R1 #R2) of m

∣∣
`′
v

S[R1, R2/x, y]
∣∣
`
, which proves the thesis.

• W ` R S
I2.1 T
↪−−−−→ R′ S

assume by IH that for all J and all ` ∈ locs(R′) there exists `′ ∈ locs(R) s.t. T J `
∗
↪→ J `′ and R

∣∣
`′
v R′

∣∣
`
.

By Lemma 5 we prove that for all J and all ` ∈ locs(R′ S) there exists `′ ∈ locs(R S) s.t. I2.1 T I `
∗
↪→ `′,

R S
∣∣
`′
v R′ S

∣∣
`
.

Proof of Theorem 3 If h L . M and E `M T
↪−→ N , then h T L . N .

Proof. We proceed by induction on the derivation of E `M T
↪−→ N . We consider only some of the rules, but the

full proof can be obtained following the same approach.

• E ` (f(x).R) S
Eβ β(f(x).R,S)
↪−−−−−−−−−−→ R[f(x).R, S/f, x]

assume ` ∈ locs(R[f(x).R, S/f, x]): we have

Eβ (β ρ(f, x.R)) L `
∗
↪→

case ` of

{ε 7→ eβ (L ε) (L [1]) (L (β ρ(f, x.R)) ε)

; 7→ L (β ρ(f, x.R)) `}

by cases on ` we prove that this reduces to L (β ρ(f, x.R) `); by Lemma 3 we obtain `′ such that
L (β ρ(f, x.R) `) L `′ and (f(x).R) S

∣∣
`′
v R[f(x).R, S/f, x]

∣∣
`
; since by hypothesis h is a consistent

map for the function application, we obtain V such that ĥ(V) v (f(x).R) S
∣∣
`′

; by transitivity of v, we

obtain ĥ(V) v R[f(x).R, S/f, x]
∣∣
`
, which proves the thesis.

19

• E ` ⊕(
−→
Un)

E⊕
−→
Un

↪−−−−→ ⊕̂(
−→
Un)

the only location in ⊕̂(
−→
Un) is ε, so we have to find V such that E⊕

−→
Un L ε

∗
↪→ V and ĥ(V) v ⊕̂(

−→
Un).

We show that E⊕
−→
Un L ε k⊕(

−−−−−−−−−−−−→
(L [i]) ∗ Ui)i=1...n and choose this as V ; we also compute ĥ(V) =

ĥ(k⊕(
−−−−−−−−−−−−→
(L [i]) ∗ Ui)i=1...n) = ⊕(

−−−−−−−−−−−−−−→
ĥ((L [i]) ∗ Ui)i=1...n); for each i = 1 . . . n we prove

ĥ((L [i]) ∗ Ui) v Ui: in fact, the argument of the function is either a symbol kUi representing Ui (which

must be a constant), and ĥ(kUi) = Ui, or some value U∗ such that L [i] U∗, and this is enough to prove

ĥ(U∗) v Ui by the hypothesis on h; this implies ĥ(V) v ⊕(
−→
Un) ⊕̂(

−→
Un), which proves the thesis.

• E ` fst(〈R,S〉) Efst
↪−−→ R

by a simple case analysis on ` we obtain Efst L ` L (1 # 1 # `), where 1 # 1 # ` ∈ locs(fst(〈R,S〉));
since h L . fst(〈R,S〉), we obtain V such that ĥ(V) v fst〈R,S〉

∣∣
1#1#`

= R
∣∣
`
, which proves the thesis.

• E ` R S
I2.1 T
↪−−−−→ R′ S

assume by IH that, for all L′, if h L′ . R, then h T L′ . R′; we assume ` ∈ locs(R′ S) and proceed
by cases:

– ` = ε: then we have I2.1 T L ε
∗
↪→ L ε; since ε ∈ locs(R S) and h L . R S, we obtain V such that

ĥ(V) v R S
∣∣
ε

= =, R S; since R S R′ S, this also implies ĥ(V) v R′ S.

– ` = 2 # `1, where `1 ∈ locs(S): then we have

I2.1 T L (2 # `1)
∗
↪→ L (2 # `1): similarly to the previous case, we obtain V such that ĥ(V) v

R S
∣∣
2#`1

= S
∣∣
`1

= R′ S
∣∣
2#`1

, which proves the thesis.

– ` = 1 # `1, where `1 ∈ locs(R′): then we have

I2.1 T L (1 # `1)
∗
↪→ T (L ◦ ILoc2.1) `1; by Lemma 6 we prove h L ◦ ILoc2.1 . R, and consequently, by

IH, we obtain V such that ĥ(V) v R′
∣∣
`1

= R′ S
∣∣
1#`1

, which proves the thesis.

Definition 3. Given a relation R on values, we define its extension to expressions R→ as follows:

M1R→M2 ⇐⇒ (∀V1.M1
∗
↪→ V1 =⇒ ∃V2.M2

∗
↪→ V2 ∧ V1RV2)

To prove the soundness theorem for dependency provenance, we introduce the following notations:

• quasi-equality LM . M ≈a LN . N (Fig. 8)

• substitution for provenance-labelled expressions

(L . M){
−−−−→
L′ . N/−→x } (Fig. 9)

• guarded reduction D ` (L . M)
T
↪−→a N (Fig. ??)

• non-guarded reduction D ` (L . M)
T
↪−→ā N (Fig. ??)

Lemma 7. Assume LM . M ≈a LN . N . Let L′M , L′N such that for all ` ∈ locs(M) ∪ locs(N) we have
LM ` ⊆→ L′M ` and LN ` ⊆→ L′N `. Then L′M . M ≈a L′N . N

Lemma 8. Suppose LM . M ≈a L′M . M ′ and
−−−−−→
LN . N ≈a

−−−−−→
L′N . N ′ (pointwise). Then (LM . M){

−−−−−→
LN . N/−→x } ≈a

(L′M . M ′){
−−−−−→
L′N . N ′/−→x }.

Lemma 9. Suppose:

EProv
2.1 L . f(x).M1 ≈a EProv

2.1 L′ . f(x).M ′1

EProv
1.1 (EProv

2.1 L) . M1 ≈a EProv
1.1 (EProv

2.1 L′) . M ′1

EProv
2.2 L . M2 ≈a EProv

2.2 L′ . M ′2

Then:

Dβ β(f(x).M1,M2) L . M1[f(x).M1,M2/f, x]

≈a Dβ β(f(x).M ′1,M
′
2) L′ . M ′1[f(x).M ′1,M

′
2/f, x]

20

a ∈→ L ε ∪ L′ ε
L . M ≈a L′ . M ′

a 6∈→ L ε ∪ L′ ε
L . c ≈a L′ . c

a 6∈→ L ε ∪ L′ ε
L . x ≈a L′ . x

a 6∈→ L ε ∪ L′ ε
L . • ≈a L′ . •

a 6∈→ L ε ∪ L′ ε
L . ε ≈a L′ . ε

a 6∈→ L ε ∪ L′ ε
(En.i L . Mi ≈a En.iL′ . M ′i)i=1...n

L . ⊕(
−→
Mn) ≈a L′ . ⊕(

−→
M ′n)

a 6∈→ L ε ∪ L′ ε
E1.1 L . M ≈a E1.1L′ . M ′

L . f(x).M ≈a L′ . f(x).M ′

a 6∈→ L ε ∪ L′ ε
E2.1 L . M1 ≈a E2.1L′ . M ′1

E2.2 L . M2 ≈a E2.2L′ . M ′2
L . M1 M2 ≈a L′ . M ′1 M ′2

a 6∈→ L ε ∪ L′ ε
E1.1 L . M ≈a E1.1L′ . M ′

L . fst(M) ≈a L′ . fst(M ′)

a 6∈→ L ε ∪ L′ ε
E1.1 L . M ≈a E1.1L′ . M ′

L . snd(M) ≈a L′ . snd(M ′)

a 6∈→ L ε ∪ L′ ε
E2.1 L . M1 ≈a E2.1L′ . M ′1

E2.2 L . M2 ≈a E2.2L′ . M ′2
L . 〈M1,M2〉 ≈a L′ . 〈M ′1,M ′2〉

a 6∈→ L ε ∪ L′ ε
E1.1 L . M ≈a E1.1L′ . M ′

L . ∼M ≈a L′ . ∼M ′

a 6∈→ L ε ∪ L′ ε
E2.1 L . M1 ≈a E2.1L′ . M ′1

E2.2 L . M2 ≈a E2.2L′ . M ′2
L . M1 #M2 ≈a L′ . M ′1 #M ′2

a 6∈→ L ε ∪ L′ ε
E3.1 L . M1 ≈a E3.1L′ . M ′1

E3.2 L . M2 ≈a E3.2L′ . M ′2

E3.3 L . M3 ≈a E3.3L′ . M ′3
L . case M1 of { 7→M2; 7→M3} ≈a
L′ . case M ′1 of { 7→M ′2; 7→M ′3}

a 6∈→ L ε ∪ L′ ε
L . ρ(−→x .M) ≈a L′ . ρ(−→x .M)

Figure 8: Quasi-equality

xi ∈ −→xn
(L . xi){

−−−−−→
L′n . Nn/

−→xn} = L′i . Ni

y /∈ −→xn

(L . y){
−−−−−→
L′n . Nn/

−→xn} = L . y

{f, x} ∩ −→xn = ∅

(EProv
1.1 L . M){

−−−−−→
L′n . Nn/

−→xn} = L′′ . M ′′

(L . f(x).M){
−−−−−→
L′n . Nn/

−→xn} = IProv
1 L′′ (L ε) . f(x).M ′′

(EProv
2.1 L . M1){

−−−−−→
L′n . Nn/

−→xn} = L′′1 . M
′′
1

(EProv
2.2 L . M2){

−−−−−→
L′n . Nn/

−→xn} = L′′2 . M
′′
2

(L . M1 M2){
−−−−−→
L′n . Nn/

−→xn} = IProv
2 L′′1 L

′′
2 (L ε) . M ′′1 M ′′2

Figure 9: Substitution for provenance-labelled expressions (selected cases)

a ∈→ L ε D `M T
↪−→ N

D ` L . M T
↪−→a N

D ` EProv
n.i L . Mi

T
↪−→a M

′
i

D ` L . ⊕(
−→
Mn)

In.i T
↪−−−−→a ⊕(M1, . . . ,M

′
i , . . . ,Mn)

D ` EProv
2.1 L . M

T
↪−→a M

′

D ` L . M N
I2.1 T
↪−−−−→a M

′ N

D ` EProv
2.2 L . N

T
↪−→a N

′

D ` L . M N
I2.2 T
↪−−−−→a M N ′

D ` EProv
2.1 L . M

T
↪−→a M

′

D ` L . 〈M,N〉
I2.1 T
↪−−−−→a 〈M ′, N〉

D ` EProv
2.2 L . N

T
↪−→a N

′

D ` L . 〈M,N〉
I2.2 T
↪−−−−→a 〈M,N ′〉

D ` EProv
1.1 L . M

T
↪−→a M

′

D ` L . fst(M)
I1.1 T
↪−−−−→a fst(M ′)

D ` EProv
1.1 L . M

T
↪−→a M

′

D ` L . snd(M)
I1.1 T
↪−−−−→a snd(M ′)

D ` EProv
3.1 L . M

T
↪−→a M

′

D ` L . case M of m
I3.1 T
↪−−−−→a case M

′ of m

Figure 10: Guarded reduction

21

a 6∈→ L ε ∪ L [1]

D ` L . (f(x).M) N
Dβ (β ρ(f,x.M))

↪−−−−−−−−−−−→ā M [f(x).M,N/f, x]

a 6∈→ L ε

F ` ⊕(
−→
Vn)

D⊕
−→
Vn

↪−−−−→ ⊕̂(
−→
Vn)

a 6∈→ L ε ∪ L [1]

D ` L . fst(〈M,N〉)
Dfst
↪−−→ā M

a 6∈→ L ε ∪ L [1]

D ` L . snd(〈M,N〉)
Dsnd
↪−−→ā N

(tt 7→ N) ∈ m
a 6∈→ L ε ∪ L [1]

D ` L . case ff of m
Dtt
↪−−→ā N

(ff 7→ N) ∈ m
a 6∈→ L ε ∪ L [1]

D ` L . case ff of m
Dff
↪−−→ā N

(• 7→ N) ∈ m
a 6∈→ L ε ∪ L [1]

D ` L . case • of m
D•
↪−−→ā N

(∼x 7→ N) ∈ m
a 6∈→ L ε ∪ L [1]

D ` L . case ∼M of m
D∼ (β∼ ρ(x.N))
↪−−−−−−−−−−−→ā N [M/x]

(ε 7→ N) ∈ m
a 6∈→ L ε ∪ L [1]

D ` L . case ε of m
Dε
↪−−→ā N

(h# t 7→ N) ∈ m
a 6∈→ L ε ∪ L [1]

D ` L . case M1 #M2 of m
D# (β# ρ(h,t.N))

↪−−−−−−−−−−−−→ā N [M1,M2/h, t]

M
∣∣
`

= M ′, ε M ′ /∈ −→xn a 6∈→ L ε

D ` L . ρ(−→xn.M) `
λ .⊥
↪−−−→ā (n+ 1) # `

M
∣∣
`

= xi, `
′ 1 ≤ i ≤ n a 6∈→ L ε

D ` L . ρ(−→xn.M) `
λ .⊥
↪−−−→ā i# `′

`′ 6= ε

M
∣∣
`

= N, `′
a 6∈→ L ε

for all i s.t. 1 ≤ i ≤ n : N 6= xi

D ` L . ρ(−→xn.M) `
λ .⊥
↪−−−→ā ε

D ` EProv
n.i L . Mi

T
↪−→ā M

′
i

D ` L . ⊕(
−→
Mn)

In.i T
↪−−−−→ā ⊕(M1, . . . ,M

′
i , . . . ,Mn)

D ` EProv
2.1 L . M

T
↪−→ā M

′

D ` L . M N
I2.1 T
↪−−−−→ā M

′ N

D ` EProv
2.2 L . N

T
↪−→ā N

′

D ` L . M N
I2.2 T
↪−−−−→ā M N ′

D ` EProv
2.1 L . M

T
↪−→ā M

′

D ` L . 〈M,N〉
I2.1 T
↪−−−−→ā 〈M ′, N〉

D ` EProv
2.2 L . N

T
↪−→ā N

′

D ` L . 〈M,N〉
I2.2 T
↪−−−−→ā 〈M,N ′〉

D ` EProv
1.1 L . M

T
↪−→ā M

′

D ` L . fst(M)
I1.1 T
↪−−−−→ā fst(M ′)

D ` EProv
1.1 L . M

T
↪−→ā M

′

D ` L . snd(M)
I1.1 T
↪−−−−→ā snd(M ′)

D ` EProv
3.1 L . M

T
↪−→ā M

′

D ` L . case M of m
I3.1 T
↪−−−−→ā case M

′ of m

Figure 11: Non-guarded reduction

22

Proof. Let

LN . N = (EProv
1.1 (EProv

2.1 L) . M1)

{EProv
2.1 L . f(x).M1,E

Prov
2.2 L . M2/f, x}

L′N . N ′ = (EProv
1.1 (EProv

2.1 L′) . M ′1)

{EProv
2.1 L′ . f(x).M ′1,E

Prov
2.2 L′ . M ′2/f, x}

Let us use the following notation:

L �S L′ ⇐⇒ (∀` ∈ S : L ` ⊆→ L′ `)

We prove:

LN �locs(N)∪locs(N ′) Dβ β(f(x).M1,M2) L

L′N �locs(N)∪locs(N ′) Dβ β(f(x).M ′1,M
′
2) L′

So, by Lemma 7, to prove the lemma we only need to show that

LN . N ≈a L′N . N ′

which is a consequence of Lemma 8.

Proof of Theorem 4
Suppose L . M ≈a L′ . M ′. Then:

1. If D ` (L . M)
T
↪−→a N , we have T L . N ≈a L′ . M ′.

2. If D ` (L . M)
T
↪−→ā N , there exist T ′, N ′ such that D `M ′ T ′

↪−→ N ′ and T L . N ≈a T ′ L′. . N ′.

Proof. We proceed by induction on the derivation of L . M ≈a L′ . M ′. Selected cases:

• a ∈→ (L ε) ∪ (L′ ε)

1. Assume D ` (L . M)
T
↪−→a N ; we prove that a ∈→ T L ε (under the dependency view, annotations

are monotonically increasing), thus a ∈→ (T L ε) ∪ (L′ ε) and thus T L . N ≈a L′ . M ′.

2. Assume D ` (L . M)
T
↪−→ā N ; by case analysis on the last rule of this derivation we show that

a 6∈→ L ε, reaching a contradiction

• a 6∈→ (L ε) ∪ (L′ ε), M = M1 M2

M ′ = M ′1 M
′
2

EProv
2.i L . Mi ≈EProv

2.i
L′ . M ′i for i = 1, 2

1. Assume D ` (L . M1 M2)
T
↪−→a N ; since a 6∈→ L ε, by a case analysis on the derivation of reduction

we see that the reduction is happening entirely within Mi (for i = 1, 2); if i = 1 (the case for i = 2
is similar, for some T1, N1 we have T = I2.1 T1, N = N1 M2, and

D ` (EProv
2.1 L . M1)

T1
↪−→a N1

By IH we have T1 (EProv
2.1 L) . N1 ≈a EProv

2.1 L′ . M ′1, thus also T L . N1 M2 ≈a L′ . M ′1 M ′2.

2. Assume D ` (L . M1 M2)
T
↪−→ā N ; by case analysis on the last rule of this derivation we show that

either the reduction happened entirely within M1 or M2 (in which case the proof is similar to the
previous subcase), or M1 = f(x).M0 and the reduction is a beta reduction

D ` L . (f(x).M0) M2

Dβ (β ρ(f,x.M0))
↪−−−−−−−−−−−→ā

M0[f(x).M0,M2/f, x]

Additionally, a 6∈→ L [1]. By case analysis on EProv
2.1 L . f(x).M0 ≈EProv

2.1
L′ . M ′1 we prove M ′1 =

f(x).M ′0, with EProv
1.1 (EProv

2.1 L) . M0 ≈a EProv
1.1 (EProv

2.1 L′) . M ′0. Then we prove:

D ` (f(x).M ′0) M ′2
Dβ (β ρ(f,x.M ′0))
↪−−−−−−−−−−−→

M ′0[f(x).M ′0,M
′
2/f, x]

23

Finally, by Lemma 9, we have:

Dβ (β ρ(f, x.M0)) L . M0[f(x).M0,M2/f, x] ≈a
Dβ (β ρ(f, x.M ′0)) L′ . M ′0[f(x).M ′0,M

′
2/f, x]

which proves the thesis

24

	Introduction
	Summary

	Background
	A provenance-aware calculus
	Locations
	Labels and provenance labellings
	Provenance transducers
	Semantics
	Type system

	Provenance views
	Where-provenance
	Expression provenance
	Dependency provenance

	Self-inspection
	Example: inspection of dynamic linking

	Conclusions
	Proofs

