
Explicit Auditing

Wilmer Ricciotti and James Cheney

Laboratory for Foundations of Computer Science
University of Edinburgh

research@wilmer-ricciotti.net

jcheney@inf.ed.ac.uk

Abstract. The Calculus of Audited Units (CAU) is a typed lambda cal-
culus resulting from a computational interpretation of Artemov’s Justifi-
cation Logic under the Curry-Howard isomorphism; it extends the simply
typed lambda calculus by providing audited types, inhabited by expres-
sions carrying a trail of their past computation history. Unlike most other
auditing techniques, CAU allows the inspection of trails at runtime as a
first-class operation, with applications in security, debugging, and trans-
parency of scientific computation.
An efficient implementation of CAU is challenging: not only do the sizes
of trails grow rapidly, but they also need to be normalized after every beta
reduction. In this paper, we study how to reduce terms more efficiently
in an untyped variant of CAU by means of explicit substitutions and
explicit auditing operations.

1 Introduction

Transparency is an increasing concern in computer systems: for complex systems,
whose desired behavior may be difficult to formally specify, auditing is an impor-
tant complement to traditional techniques for verification and static analysis for
security [2,4,10,26,18,15], program slicing [21,25], and provenance [20,23]. How-
ever, formal foundations of auditing as a programming language primitive are
not yet well-established: most approaches view auditing as an extra-linguistic
operation, rather than a first-class construct. Recently, however, Bavera and
Bonelli [12] introduced calculus in which recording and analyzing audit trails
are first-class operations. They proposed a λ-calculus based on a Curry-Howard
correspondence with Justification Logic [6,7,5,8]. We refer to this system as the
calculus of audited units, or CAU. In recent work, we developed a simplified
form of CAU and proved strong normalization [24].

In CAU, audited units are handled using a type system based on modal
logic, following Pfenning and Davies [22]. The type JsKA is the type of audited
units, where s is “evidence”, or the expression that was evaluated to produce
the result of type A. Expressions of this type !qM contain a value of type A
along with a “trail” q explaining how M was obtained by evaluating s. Trails
are essentially (skeletons of) proofs of reduction of terms, which can be inspected
by structural recursion using a special language construct.

To date, most work on foundations of auditing has focused on design, se-
mantics, and correctness properties, and relatively little attention has been paid
to efficient execution, while most work on auditing systems has neglected these
foundational aspects. Some work on tracing and slicing has investigated the use
of “lazy” tracing [21]; however, to the best of our knowledge there is no prior
work on how to efficiently evaluate a language such as CAU in which auditing
is a built-in operation. This is the problem studied in this paper.

A näıve approach to implementing the semantics of CAU as given by Bavera
and Bonelli runs immediately into the following problem: a CAU reduction first
performs a principal contraction (e.g. beta reduction), which typically introduces
a local trail annotation describing the reduction, that can block further beta-
reductions. The local trail annotations are then moved up to the nearest enclosing
audited unit constructor using one or more permutation reductions. For example:

!qF [(λx.M) N]
β−−→ !qF [β . M {N/x}]

τ
−−−� !t(q,Q[β])F [M {N/x}]

where F [] is a bang-free evaluation context and Q[β] is a subtrail that indicates
where in context F the β-step was performed. As the size of the term being
executed (and distance between an audited unit constructor and the redexes)
grows, this evaluation strategy slows down quadratically in the worst case; ea-
gerly materializing the traces likewise imposes additional storage cost.

While some computational overhead seems inevitable to accommodate au-
diting, both of these costs can in principle be mitigated. Trail permutations are
computationally expensive and can often be delayed without any impact on the
final outcome. Pushing trails to the closest outer bang does not serve any real
purpose: it would be more efficient to keep the trail where it was created and
perform normalization only if and when the trail must be inspected (and this
operation does not even actually require an actual pushout of trails, because we
can reuse term structure to compute the trail structure on-the-fly).

This situation has a well-studied analogue: in the λ-calculus, it is not nec-
essarily efficient to eagerly perform all substitutions as soon as a β-reduction
happens. Instead, calculi of explicit substitutions such as Abadi et al.’s λσ [1]
have been developed in which substitutions are explicitly tracked and rewritten.
Explicit substitution calculi have been studied extensively as a bridge between
the declarative rewriting rules of λ-calculi and efficient implementations. Inspired
by this work, we hypothesize that calculi with auditing can be implemented more
efficiently by delaying the operations of trail extraction and erasure, using ex-
plicit symbolic representations for these operations instead of performing them
eagerly. We envision this as a first step towards efficient abstract machines for
calculi with tracing and trail inspection.

We do however need to make sure that the trails we produce still correctly
describe the sequence of operations that were actually performed (e.g. respecting
call-by-name or call-by-value reduction): when we perform a principal contrac-
tion, pre-existing trail annotations must be recorded as history that happened
before the contraction, and not after. In the original eager reduction style, this is
trivial because we never contract terms containing trails; however, to accommo-

2

date lazy treatment of trails, we need to be more careful. Accordingly, we will
introduce explicit terms for delayed trail erasure bMc and delayed trail extrac-
tion dMe. We can use these features to decrease the cost of normalization: for
instance, the β-reduction above can be replaced by a rule with delayed treatment
of substitution and trails, denoted by Beta:

!qF [(λ.M) N]
Beta−−−−→ !qF [t(app(lam(dMe), dNe),β) . bMc [bNc]]

Here, we use de Bruijn notation [13] (as in λσ, and anticipating Sections 3
and 4), and write M [N] for the explicit substitution of N for the outermost
bound variable of λ.M . The trail constructor t stands for transitive composi-
tion of trails, while app and lam are congruence rules on trails, so the trail
t(app(lam(dMe), dNe),β) says that the redex’s trail is constructed by extract-
ing the latent trail information from M and N , combining it appropriately, and
then performing a β step. The usual contractum itself is obtained by substitut-
ing the erased argument bNc into the erased function body bMc. Although this
may look a bit more verbose than the earlier beta-reduction, the additional work
done to create the trail t(app(lam(dMe), dNe),β) is all work that would have
been done anyway using the eager system, while the use of lazy trail-extraction
and trail-erasure operations gives us many more ways to do the remaining work
efficiently — for example, if the trail is never subsequently used, we can just
discard it without doing any more work.

Contributions. We study an extension of Abadi et al.’s calculus λσ [1] with ex-
plicit auditing operations. We consider a simplified, untyped variant CAU− of
the Calculus of Audited Units (Section 2); this simplifies our presentation be-
cause type information is not needed during execution. We revisit λσ in Section 3,
extend it to include auditing and trail inspection features, and discuss problems
with this initial, näıve approach. We also (Section 4) introduce explicit versions
of the “trail extraction” and “trail erasure” operations, extend the rewriting the-
ory to account for them: as our main result, we show that the resulting system
CAU−σ correctly refines the untyped CAU (subject to an obvious translation).
We evaluate the calculus (Section 5) illustrating how the resulting system can
be asymptotically more efficient than a näıve implementation of the CAU rules.

2 The Untyped Calculus of Audited Units

The language CAU− presented here is an untyped version of the calculi λh [12]
and Ricciotti and Cheney λhc [24] obtained by erasing all typing information
and a few other related technicalities: this will allow us to address all the in-
teresting issues related to the reduction of CAU terms, but with a much less
pedantic syntax. To help us explain the details of the calculus, we adapt some
examples from our previous paper [24]; other examples are described by Bavera
and Bonelli [12].

Unlike the typed variant of the calculus, we only need one sort of variables,
denoted by the letters x, y, z The syntax of CAU− is as follows:

3

Terms M,N ::= x | λx.M |M N | let!(x := M,N) | !qM | q . M | ι(ϑ)
Trails q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′)

| let!(q, q
′) | tb(ζ)

CAU− extends the pure lambda calculus with audited units !qM (colloqui-
ally, “bang M”), whose purpose is to decorate the term M with a log q of its
computation history, callezd trail in our terminology: when M evolves as a result
of computation, q will be updated by adding information about the reduction
rules that have been applied. The form !qM is in general not intended for use
in source programs: instead, we will write ! M for !rM , where r represents the
empty execution history (reflexivity trail).

Audited units can then be employed in larger terms by means of the “ let-
bang” operator, which unpacks an audited unit and thus allows to access its
contents. The variable declared by a let! is bound in its second argument: in
essence let!(x := !qM,N) will reduce to N , where free occurrences of x have been
replaced by M ; the trail q will not be discarded, but will be used to produce a
new trail explaining this reduction.

The expression form q . M is an auxiliary, intermediate annotation of M
with partial history information which is produced during execution and will
eventually stored in the closest surrounding bang.

Example 1. In CAU− we can express history-carrying terms explicitly: for in-
stance, if we use n̄ to express the Church encoding of a natural number n, and
plus or fact for lambda terms computing addition and factorial on said repre-
sentation, we can write audited units like

!q 2̄ !q′ 6̄

where q is a trail representing the history of 2̄ i.e., for instance, a witness for the
computation that produced 2̄ by reducing plus 1̄ 1̄; likewise, q′ might describe
how computing fact 3̄ produced 6̄.

Supposing we wish to add these two numbers together, at the same time
retaining their history, we will use the let! construct to look inside them:

let!(x := !q 2̄, let!(y := !′q 6̄, plus x y)) −−� q′′ . 8̄

where the final trail q′′ is produced by composing q and q′; if this reduction
happens inside an external bang, q′′ will eventually be captured by it.

Trails, representing sequences of reduction steps, encode the (possibly partial)
computation history of a given subterm. The main building blocks of trails are
β (representing standard beta reduction), β! (contraction of a let-bang redex)
and ti (denoting the execution of a trail inspection). For every class of terms
we have a corresponding congruence trail (lam,app, let!, tb, the last of which
is associated with trail inspections), with the only exception of bangs, which do
not need a congruence rule because they capture all the computation happening
inside them. The syntax of trails is completed by reflexivity r (representing a
null computation history, i.e. a term that has not reduced yet) and transitivity

4

t (i.e. sequential composition of execution steps). As discussed by our earlier
paper [24], we omit Bavera and Bonelli’s symmetry trail form.

The last term form ι(ϑ), called trail inspection, will perform primitive recur-
sion on the computation history of the current audited unit. The metavariables
ϑ and ζ associated with trail inspections are trail replacements, i.e. maps asso-
ciating to each possible trail constructor, respectively, a term or a trail:

ϑ ::= {M1/r,M2/t,M3/β,M4/β!,M5/ti,M6/lam,M7/app,M8/let!,M9/tb}
ζ ::= {q1/r, q2/t, q3/β, q4/β!, q5/ti, q6/lam, q7/app, q8/let!, q9/tb}

When the trail constructors are irrelevant for a certain ϑ or ζ, we will omit them,

using the notations {
−→
M} or {−→q }. These constructs represent (or describe) the

nine cases of a structural recursion operator over trails, which we write as qϑ.

Definition 1. The operation qϑ, which produces a term by structural recursion
on q applying the inspection branches ϑ, is defined as follows:

rϑ , ϑ(r) t(q, q′)ϑ , ϑ(t) (qϑ) (q′ϑ)

βϑ , ϑ(β) β!ϑ , ϑ(β!)

tiϑ , ϑ(ti) lam(q)ϑ , ϑ(lam) (qϑ)

app(q, q′)ϑ , ϑ(app) (qϑ) (q′ϑ) let!(q, q
′)ϑ , ϑ(let!) (qϑ) (q′ϑ)

tb({−→q })ϑ , ϑ(tb)
−−→
(qϑ)

where the sequence
−−→
(qϑ) is obtained from −→q by pointwise recursion.

Example 2. Trail inspection can be used to count all of the contraction steps in
the history of an audited unit, by means of the following trail replacement:

ϑ+ ::= {0̄/r, plus/t, 1̄/β, 1̄/β!, 1̄/ti, λx.x/lam, plus/app, plus/let!, sum/tb}

where sum is a variant of plus taking nine arguments, as required by the arity
of tb. For example, we can count the contractions in q = t(let!(β, r),β!) as:

qϑ+ = plus (plus 1̄ 0̄) 1̄

2.1 Reduction

Reduction in CAU− includes rules to contract the usual beta redexes contract-
ing an applied lambda abstraction, “beta-bang” redexes, which unpack the bang
term appearing as the definiens of a let!, and trail inspections. These rules, which
we call principal contractions, are defined as follows:

(λx.M) N
β−−→ β . M {N/x} let!(x := !qM,N)

β−−→ β! . N {q . M/x}
!qF [ι(ϑ)]

β−−→ !qF [ti . qϑ]

Substitution M {N/x} is defined in the traditional way, avoiding variable cap-
ture. The first contraction is familiar, except for the fact that the reductM {N/x}

5

has been annotated with a β trail. The second one deals with unpacking a bang:
from !qM we obtain q . M , which is then substituted for x in the target term N ;
the resulting term is annotated with a β! trail. The third contraction defines the
result of a trail inspection ι(ϑ). Trail inspection will be contracted by captur-
ing the current history, as stored in the nearest enclosing bang, and performing
structural recursion on it according to the branches defined by ϑ. The concept of
“nearest enclosing bang” is made formal by contexts F in which the hole cannot
appear inside a bang (or bang-free contexts, for short):

F ::= � | λx.F | F M |M F | let!(F ,M) | let!(M,F) | q . F | ι({
−→
M,F ,

−→
N })

The definition of the principal contractions is completed, as usual, by a contex-
tual closure rule stating that they can appear in any context E :

M
β−−→ N

E [M]
β−−→ E [N]

E ::= � | λx.E | E M |M E | let!(E ,M)

| let!(M, E) | !qE | q . E | ι({
−→
M, E ,

−→
N })

The principal contractions introduce local trail subterms q′ . M , which can
block other reductions. Furthermore, the rule for trail inspection assumes that
the q annotating the enclosing bang really is a complete log of the history of the
audited unit; but at the same time, it violates this invariant, because the ti trail
created after the contraction is not merged with the original history q.

For these reasons, we only want to perform principal contractions on terms
not containing local trails: after each principal contraction, we apply the follow-
ing rewrite rules, called permutation reductions, to ensure that the local trail is
moved to the nearest enclosing bang:

r . M
τ−−→M q . (q′ . M)

τ−−→ t(q, q′) . M

!q(q
′ . M)

τ−−→ !t(q,q′)M λx.(q . M)
τ−−→ lam(q) . λx.M

(q . M) N
τ−−→ app(q, r) . M N M (q . N)

τ−−→ app(r, q) . M N
let!(x := q . M,N)

τ−−→ let!(q, r) . let!(x := M,N)

let!(x := M, q . N)
τ−−→ let!(r, q) . let!(x := M,N)

ι({M1, . . . , q . Mi, . . . ,M9})
τ−−→ tb({r, . . . , q, . . . , r}) . ι({

−→
M9})

Moreover, the following rules are added to the
τ−−→ relation to ensure confluence:

lam(r)
τ−−→ r app(r, r)

τ−−→ r t(r, q)
τ−−→ q

let!(r, r)
τ−−→ r tb({−→r }) τ−−→ r t(q, r)

τ−−→ q
t(t(q1, q2), q3)

τ−−→ t(q1, t(q2, q3))

t(lam(q), lam(q′))
τ−−→ lam(t(q, q′))

t(lam(q1), t(lam(q′1), q))
τ−−→ t(lam(t(q1, q

′
1)), q)

t(app(q1, q2),app(q′1, q
′
2))

τ−−→ app(t(q1, q
′
1), t(q2, q

′
2))

t(app(q1, q2), t(app(q′1, q
′
2)), q)

τ−−→ t(app(t(q1, q
′
1), t(q2, q

′
2)), q)

t(let!(q1, q2), let!(q
′
1, q
′
2))

τ−−→ let!(t(q1, q
′
1), t(q2, q

′
2))

t(let!(q1, q2), t(let!(q
′
1, q
′
2)), q)

τ−−→ t(let!(t(q1, q
′
1), t(q2, q

′
2)), q)

t(tb(−→q1), tb(−→q2))
τ−−→ tb(

−−−−−→
t(q1, q2))

t(tb(−→q1), t(tb(−→q2), q))
τ−−→ t(tb(

−−−−−→
t(q1, q2)), q)

6

As usual,
τ−−→ is completed by a contextual closure rule. We prove

Lemma 1 ([12]).
τ−−→ is terminating and confluent.

When a binary relation
R−→ on terms is terminating and confluent, we will write

R(M) for the unique R-normal form of M . Since principal contractions must
be performed on τ -normal terms, it is convenient to merge contraction and τ -

normalization in a single operation, which we will denote by
CAU−−−−−−→:

M
β−−→ N

M
CAU−−−−−−→ τ(N)

3 Näıve explicit substitutions

We seek to adapt the existing abstract machines for the efficient normalization
of lambda terms to CAU−. Generally speaking, most abstract machines act on
nameless terms, using de Bruijn’s indices [13], thus avoiding the need to perform
renaming to avoid variable capture when substituting a term into another.

Moreover, since a substitution M {N/x} requires to scan the whole term M
and is thus not a constant time operation, it is usually not executed immediately
in an eager way. The abstract machine actually manipulates closures, or pairs
of a term M and an environment s declaring lazy substitutions for each of the
free variables in M : this allows s to be applied in an incremental way, while
scanning the term M in search for a redex. In the λσ-calculus of Abadi et
al. [1], lazy substitutions and closures are manipulated explicitly, providing an
elegant bridge between the classical λ-calculus and its concrete implementation
in abstract machines. Their calculus expresses beta reduction as the rule

(λ.M) N −→M [N]

where λ.M is a nameless abstraction à la de Bruijn, and [N] is a (suspended) ex-
plicit substitution mapping the variable corresponding to the first dangling index
in M to N , and all the other variables to themselves. Terms in the form M [s],
representing closures, are syntactically part of λσ, as opposed to substitutions
M {N/x}, which are meta-operations that compute a term.

In this section we formulate a first attempt at adding explicit substitutions
to CAU−. We will not prove any formal result for the moment, as our purpose
is to elicit the difficulties of such a task. An immediate adaptation of λσ-like
explicit substitutions yields the following syntax:

Terms M,N ::= 1 | λ.M |M N | let!(M,N) | !qM | q . M | ι(ϑ) |M [s]
Substitutions s, t ::= 〈〉 | ↑ | s ◦ t |M · s

where 1 is the first de Bruijn index, the nameless λ binds the first free index of its
argument, and similarly the nameless let! binds the first free index of its second
argument. Substitutions include the identity (or empty) substitution 〈〉, lift ↑

7

(morally replacing all free indices n with their successor n+ 1), the composition
s ◦ t (equivalent to the sequencing of s and t) and finally M · s (indicating a
substitution that will replace the first free index with M , and other indices n
with their predecessor n− 1 under substitution s). Trails are unchanged.

We write M [N1 · · ·Nk] as syntactic sugar for M [N1 · · ·Nk · 〈〉]. Then, CAU−

reductions can be expressed as follows:

(λ.M) N
β−−→ β . M [N] let!(!qM,N)

β−−→ β! . N [q . M]

!qF [ι(ϑ)]
β−−→ !qF [ti . qϑ]

(trail inspection, which does not use substitutions, is unchanged). The idea is
that explicit substitutions make reduction more efficient because their evalua-
tion does not need to be performed all at once, but can be delayed, partially
or completely; delayed explicit substitutions applied to the same term can be
merged, so that the term does not need to be scanned twice. The evaluation of
explicit substitution can be defined by the following σ-rules:

1[〈〉] σ−−→ 1 〈〉 ◦ s σ−−→ s

1[M · s] σ−−→M ↑ ◦ 〈〉 σ−−→ ↑
(λM)[s]

σ−−→ λ(M [1 · (s ◦ ↑)]) ↑ ◦ (M · s) σ−−→ s

(M N)[s]
σ−−→M [s] N [s] (M · s) ◦ t σ−−→M [t] · (s ◦ t)

(!qM)[s]
σ−−→ !q(M [s]) (s1 ◦ s2) ◦ s3

σ−−→ s1 ◦ (s2 ◦ s3)

let!(M,N)[s]
σ−−→ let!(M,N [1 · (s ◦ ↑)]) (q . M)[s]

σ−−→ q . (M [s])

ι({
−→
M})[s] σ−−→ ι({

−−→
M [s]}) M [s][t]

σ−−→M [s ◦ t]

These rules are a relatively minor adaptation from those of λσ: as in that lan-
guage, σ-normal forms do not contain explicit substitutions, save for the case of
the index 1, which may be lifted multiple times, e.g.:

1[↑n] = 1[↑ ◦ · · · ◦ ↑︸ ︷︷ ︸
n times

]

If we take 1[↑n] to represent the de Bruijn index n+ 1, as in λσ, σ-normal terms
coincide with a nameless representation of CAU−.

The σ-rules are deferrable, in that we can perform β-reductions even if a
term is not in σ-normal form. We would like to treat the τ -rules in the same
way, perhaps performing τ -normalization only before trail inspection; however,
we can see that changing the order of τ -rules destroys confluence even when β-
redexes are triggered in the same order. Consider for example the reductions in
Figure 1: performing a τ -step before the beta-reduction, as in the right branch,
yields the expected result. If instead we delay the τ -step, the trail q decorating
N is duplicated by beta reduction; furthermore, the order of q and β gets mixed
up: even though q records computation that happened (once) before β, the final
trail asserts that q happened (twice) after β.1 As expected, the two trails (and
consequently the terms they decorate) are not joinable.

1 Although the right branch describes an unfaithful account of history, it is still a
coherent one: we will explain this in more detail in the conclusions.

8

(λ.M 1 1) (q . N)
τ //

β

��

app(r, q) . (λ.M 1 1) N

β

��
β . (M 1 1)[q . N]

στ

����

app(r, q) . β . (M 1 1)[N]

στ

����
t(β,app(app(r, q), q)) . M N N t(app(r, q),β) . M N N

Fig. 1. Non-joinable reduction in CAU− with näıve explicit substitutions

The example shows that β-reduction on terms whose trails have not been
normalized is anachronistic. If we separated the trails stored in a term from the
underlying, trail-less term, we might be able to define a catachronistic, or time-
honoring version of β-reduction. For instance, if we write bMc for trail-erasure
and dMe for the trail-extraction of a term M , catachronistic beta reduction
could be written as follows:

(λ.M) N
β−−→ t(d(λ.M) Ne ,β) . bMc [bNc]

let!(!qM,N)
β−−→ t(dlet!(!qM,N)e ,β!) . bNc [q . M]

!qF [ι(ϑ)]
β−−→ !qF [ti . q′ϑ] where q′ = τ(t(q, dF [ι(ϑ)]e))

We could easily define trail erasure and extraction as operations on pure
CAU− terms (without explicit substitutions), but the cost of eagerly computing
their result would be proportional to the size of the input term; furthermore,
the extension to explicit substitutions would not be straightforward. Instead,
in the next section, we will describe an extended language to manipulate trail
projections explicitly.

4 The calculus CAU−
σ

We define the untyped Calculus of Audited Units with explicit substitutions, or
CAU−σ , as the following extension of the syntax of CAU− presented in Section 2:

Terms M,N ::= 1 | λ.M |M N | let!(M,N) | !qM | q . M | ι(ϑ)
| M [s] | bMc

Trails q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′)
| let!(q, q

′) | tb(ζ) | dMe
Substitutions s, t ::= 〈〉 | ↑ |M · s | s ◦ t

CAU−σ builds on the observations about explicit substitutions we made in the
previous section: in addition to closures M [s], it provides syntactic trail erasures
denoted by bMc; dually, the syntax of trails is extended with the explicit trail-
extraction of a term, written dMe.

In the näıve presentation, we gave a satisfactory set of σ-rules defining the
semantics of explicit substitutions, which we keep as part of CAU−σ . In addition,

9

we need to provide new rules to define the semantics of explicit projections: we
can adapt the informal definition of b·c and d·e, keeping in mind that the result
of explicit projections, just like that of explicit substitutions, does not need to
be computed immediately:

b1c σ−−→ 1 d1e σ−−→ r

b1[↑n]c σ−−→ 1[↑n] d1[↑n]e σ−−→ rlam(dMe)
bλ.Mc σ−−→ λ. bMc dλ.Me σ−−→
bM Nc σ−−→ bMc bNc dM Ne σ−−→ app(dMe , dNe)
b!qMc

σ−−→ !qM d!qMe
σ−−→ r

blet!(M,N)c σ−−→ let!(bMc , bNc) dlet!(M,N)e σ−−→ let!(dMe , dNe)
bq . Mc σ−−→ bMc dq . Me σ−−→ t(q, dMe)⌊
ι({
−→
M})

⌋
σ−−→ ι({

−−→
bMc})

⌈
ι({
−→
M})

⌉
σ−−→ tb({

−−→
dMe})

These rules are completed by congruence rules asserting that they can be used
in any subterm or subtrail of a given term or trail. The τ rules from Section 2 are
added to CAU−σ with the obvious adaptations. We prove that σ and τ , together,
yield a terminating and confluent rewriting system.

Theorem 1. (
σ−−→ ∪ τ−−→) is terminating and confluent.

Proof. Tools like AProVE [16] are able to prove termination automatically. Local
confluence can be proved easily by considering all possible pairs of rules: full
confluence follows as a corollary of these two results. ut

We can prove that σ-normal terms coincide with the nameless variant of
CAU− outlined in Section 3. This is expressed by the following lemma:

Lemma 2. The σ-normal terms, trails and substitutions of CAU−σ are ex-
pressed by the following grammar:

M,N ::= 1 | 1[↑n] | λ.M |M N | let!(M,N) | !qM | q . M | ι(ϑ)
q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′) | let!(q, q

′) | tb(ζ)
s, t ::= 〈〉 | ↑n |M · s

From this result, we extract a definition of σ-normal contexts E and S:

E ::= � | λ.E | (E N) | (M E) | let!(E , N) | let!(M, E) | !qE | q . E | ι({
−→
M, E ,

−→
N })

S ::= E · s |M · S

where all the terms M,N , trails q and substitutions s appearing in these defini-
tions are σ-normal.

4.1 Beta reduction

We replace the definition of β-reduction by the following lazy rules that use
trail-extraction and trail-erasure to ensure that the correct trails are eventually

10

produced:

(λ.M) N
Beta−−−−→ t(app(lam(dMe), dNe),β) . bMc [bNc]

let!(!qM,N)
Beta−−−−→ t(let!(r, dNe),β!) . bNc [q . M]

!qF [ι(ϑ)]
Beta−−−−→ !qF [ti . q′ϑ] where q′ = τ(t(q, dF [ι(ϑ)]e))

where F specifies that the reduction cannot take place within a bang, a substi-
tution, or a trail erasure:

F ::= � | λ.F | (F N) | (M F) | let!(F , N) | let!(M,F) | q . F | ι(
−→
M,F ,

−→
N) | F [s]

As usual, the relation is extended to inner subterms by means of congruence
rules. However, we need to be careful: we cannot reduce within a trail-erasure,
because if we did, the newly created trail would be erroneously erased:

wrong: b(λ.M) Nc Beta−−−−→ bt(app(lam(dMe), dNe),β) . bMc [bNc]c
σ−−→ bbMc [bNc]c

correct: b(λ.M) Nc
σ
−−−� (λ. bMc) bNc
Beta−−−−→ t(app(lam(dbMce), dbNce),β) . bMc [bNc]

This is why we express the congruence rule by means of contexts Eσ such that
holes cannot appear within erasures (the definition also employs substitution
contexts Sσ to allow reduction within substitutions):

M
Beta−−−−→ N

Eσ[M]
Beta−−−−→ Eσ[N]

Eσ ::= � | λ.Eσ | (Eσ N) | (M Eσ) | let!(Eσ, N)

| let!(M, Eσ) | !qEσ | q . Eσ | ι({
−→
M, Eσ,

−→
N })

|Eσ[s] |M [Sσ]
Sσ ::= Sσ ◦ t | s ◦ Sσ | Eσ · s |M · Sσ

We denote στ -equivalence (the reflexive, symmetric, and transitive closure of
στ−−→) by means of

στ←−−→. As we will prove, στ -equivalent CAU−σ terms can be
interpreted as the same CAU− term: for this reason, we define reduction in

CAU−σ as the union of
Beta−−−−→ and

στ←−−→:

CAU−σ−−−−−→ :=
Beta−−−−→∪ στ←−−→

4.2 Properties of the rewriting system

The main results we prove concern the relationship between CAU− and CAU−σ :
firstly, every CAU− reduction must still be a legal reduction within CAU−σ ; in
addition, it should be possible to interpret every CAU−σ reduction as a CAU−

reduction over suitable στ -normal terms.

Theorem 2. If M
CAU−

−−−−−−� N , then M
CAU−σ−−−−−−� N .

11

M

CAU−σ

zzzz

CAU−σ

$$ $$
στ
����

N

στ

����

στ(M)

CAU−zzzz CAU− $$ $$

R

στ

����
στ(N)

CAU− $$ $$

στ(R)

CAU−zzzz
S

Fig. 2. Relativized confluence for CAU−
σ .

Theorem 3. If M
CAU−σ−−−−−−� N , then στ(M)

CAU−

−−−−−−� στ(N).

Although CAU−σ , just like CAU−, is not confluent (different reduction
strategies produce different trails, and trail inspection can be used to compute
on them, yielding different terms as well), the previous results allow us to prove
a relativized confluence theorem:

Theorem 4. If M
CAU−σ−−−−−−� N and M

CAU−σ−−−−−−� R, and furthermore στ(N)
and στ(R) are joinable in CAU−, then N and R are joinable in CAU−σ .

Proof. By Theorem 3 we know στ(M)
CAU−

−−−−−−−� στ(N) and στ(M)
CAU−

−−−−−−−�

στ(R). By hypothesis, there exists a CAU− term S such that στ(N)
CAU−

−−−−−−−�

S and στ(R)
CAU−

−−−−−−−� S. By Theorem 2 these two last reductions are also
allowed in CAU−σ . Figure 2 illustrates the proof. ut

While the proof of Theorem 2 is not overly different from the similar proof for
the λσ-calculus, Theorem 3 is more interesting. The main challenge is to prove

that whenever M
Beta−−−−→ N , then στ(M)

CAU−

−−−−−−−� στ(N). However, when

proceeding by induction on M
Beta−−−−→ N , the terms στ(M) and στ(N) are too

normalized to provide us with a good enough induction hypothesis: in particular,
we would want them to be in the form q . R even when q is reflexivity. We call
terms in this quasi-normal form focused, and prove the theorem by reasoning on
them. The appendix contains the details of the proof.

5 Evaluation

To evaluate how CAU−σ can be beneficial in achieving more efficient audited
computation, let us consider the following term:

! (λk+2.minus 1 (k + 2)) ι(ϑ+) M1 · · ·Mk ι(ϑ+)

12

The first term in the application receives k + 2 arguments as input, then sub-
tracts the first one from the last (under the assuption that these two arguments
represent integer numbers), ignoring the k intermediate arguments. We apply
this function to a list of arguments, the first and last of which are inspections
using the ϑ+ defined in Example 2; the terms M1 · · ·Mk can be chosen freely.

The purpose of the term is to provide a rudimentary but effective profiling fa-
cility: under a call-by-value strategy, the term will compute the cost of evaluating

the
−→
Mk: under a call-by-value strategy, we start by reducing the first inspection,

which will count the number of contractions performed before the start of the
profiling process (if any); then we reduce the Mi, from left to right; finally, we
count the contraction steps at the end of the process, by means of another trail
inspection: by subtracting the two values, we obtain an approximation of the
cost of evaluating the Mi.

We now examine this reduction in detail: for this purpose, we fix the Mi to
be identity terms I = λ.1: this expression is already in normal form, therefore
such a computation will only count the “overhead” contractions of the profiling
process. In CAU−, the reduction proceeds by means of β-contractions followed
by τ -normalization steps:

! (λk+2.minus 1 (k + 2)) ι(ϑ+)
−→
Ik ι(ϑ+)

β−−→ ! (λk+2.minus 1 (k + 2)) (ti . 0̄)
−→
Ik ι(ϑ+)

τ
−−−�

(c1)

!app(···app(ti),r)··· ,r) (λk+2.minus 1 (k + 2)) 0̄
−→
Ik ι(ϑ+)

We assume that no computation has been performed on the initial term, so the
first trail inspection returns ϑ(r) = 0̄; the trail normalization step includes k+ 2
reductions to push ti to the outer bang; the usage of congruence trails app makes
the trail grow to a size which is proportional to the number k + 2 of arguments
of the application; to complete the normalization, we need to examine this trail:
the time required by this process is proportional to the size of the trail. Thus,
the cost c1 of this normalization grows linearly with the size of the application.

β−−→ !app(···app(ti),r)··· ,r) (β . λk+1.minus 1 0̄)
−→
Ik ι(ϑ+)

τ
−−−�

(c2)

!app(···t(app(ti),r),β)··· ,r) (λk+1.minus 1 0̄)
−→
Ik ι(ϑ+)

The next step is to reduce the first argument of the application. The cost c2
of the subsequent trail normalization can be obtained similarly to the previous
case.

β−−→ !app(···app(ti),r)··· ,r) (β . λk.minus 1 0̄)
−−→
Ik−1 ι(ϑ+)

τ
−−−�

(ce)

!app(···t(app(t(app(ti),r),β),r),β)··· ,r) (λk.minus 1 0̄)
−−→
Ik−1 ι(ϑ+)

. . .
τ
−−−�

ck+2

!qk (λ.minus 1 0̄) ι(ϑ+)
β−−→

cβ
!qk (λ.minus 1 0̄) (ti . qkϑ+)

13

We reduce the application one argument after another: notice that, even though
the size of the term decreases, the trail can only grow, although its size is al-
ways bounded by a linear function of k: thus, each trail normalization requires
ci ∈ Θ(k) steps. The cost of the final β-step is also Θ(k), because of the time
needed to construct the term qkϑ+. The total cost of this reduction is thus(
cβ +

∑k+2
i=1 ci

)
∈ Θ(k2)

We now consider the same term in CAU−σ . The following result will help us
compute with explicit operations in an efficient way.

Lemma 3. The following rewritings are admissible in CAU−σ :

(a.1) M −→ dMe . bMc
(a.2) dbMce −→ r

(a.3) bλ.Mc (qN . bNc) −→ t(app(r, qN),β) . bM [bNc]c
(a.4) (qM . b(λ.M)[s]c) (qN . bNc) −→ t(app(qM , qN),β) . bM [bNc · s]c

In CAU−σ , we expect to evaluate terms ! N with no previous computation
history: thus, we may start the reduction from ! bNc instead (this is not a
limitation, since in the general case we may use rule (a.1) to rewrite N to dNe .
bNc, and then evaluate the erased subterm as normal). In our example, we
proceed as follows:

!
⌊
(λk+2.minus 1 (k + 2)) ι(ϑ+)

−→
Ik ι(ϑ+)

⌋
σ
−−−� !

⌊
λk+2.minus 1 (k + 2)

⌋
ι(bϑ+c)

−−→
bIck bι(ϑ+)c

Beta−−−−→
(?)

!
⌊
λk+2.minus 1 (k + 2)

⌋
(ti . b0̄c)

−−→
bIck bι(ϑ+)c

The first σ reductions, which push trail erasure inside, require Θ(k) steps2. The
Beta-reduction flagged with (?) requires us to scan the whole body of the bang
to compute a normalized trail: although we can optimize it by not looking for
trails within erasures (rule (a.2)), the body of the bang contains k + 2 erasures,
so the cost of this step is Θ(k).

(a.3)−−−→ ! (t(app(r, ti),β) .
⌊
(λk+1.minus 1 (k + 2))[b0̄c]

⌋
)
−−→
bIck bι(ϑ+)c

(a.4)−−−→ ! (t(app(t(app(r, ti),β), r),β) .⌊
(λk.minus 1 (k + 2))[bIc · b0̄c]

⌋
)
−−−−→
bIck−1 bι(ϑ+)c

In the following steps, we can enjoy the benefits of our calculus: not only we
do not need to normalize trails after each contraction step, but certain frequent
term forms that are almost redexes, can be optimized by means the admissible
rules (a.3) and (a.4) (the former being a special case of the latter); each of these

2 Actually, in an abstract machine implementation, these σ-steps would be executed as
part of the redex search, so their contribution to the computational cost is negligible.

14

reductions only requires constant time.

. . .
(a4)−−→ ! (q′k .

⌊
(λ.minus 1 (k + 2))[

−−→
bIck · b0̄c])

⌋
) ι(bϑ+c)

Beta−−−−→
(†)

! (q′k .
⌊
(λ.minus 1 (k + 2))[bIck · b0̄c]

⌋
) (ti . qkϑ+)

The Beta-reduction flagged with (†) requires Θ(k) steps, because we need to
obtain the normal form qk of q′k, and the size of this last trail grows linearly with
k. The total cost of the reduction, given by three linear time and k constant time
operations, is thus in Θ(k).

6 Conclusions and Future Directions

The calculus CAU−σ which we introduced in this paper provides a finer-grained
view over the reduction of history-carrying terms: although it does not enforce a
reduction strategy, but provides better grounds on which to implement reduction
efficiently. In future work, we plan to adapt abstract machines such as the SECD
machine [17] or the CAM machine [14] to the calculus of audited units, using
CAU−σ as their formal justification.

In our discussion, we showed that the original definition of beta-reduction,
when applied to terms that are not in trail-normal form, creates temporally
unsound trails. We might wonder whether these anachronistic trails carry any
meaning: let us take, as an example, the reduction on the left branch of Figure 1:

(λ.M 1 1)(q . N) −−� t(β,app(app(r, q), q)) . M N N

We know that q is the trace left behind by the reduction that led to N from the
original term, say R:

R −→ q . N

We can see that the anachronistic trail is actually consistent with the reduction
of (λ.M 1 1) R under a leftmost-outermost strategy:

(λ.M 1 1) R −→ β . M R R −−� β . M (q . N) (q . N)

−−� t(β,app(app(r, q), q)) . M N N

Under the anachronistic reduction, q acts as the ghost of an original inner redex.
Through substitution within M , we get evidence that the contraction of an inner
redex can be swapped with a subsequent head reduction: this is a key result in
the proof of standardization that is usually obtained using the notion of residual
([11], Lemma 11.4.5). Based on this remark, we conjecture that trails might be
used to provide a more insightful proof: it would thus be interesting to see how
trails relate to recent advancements in standardization ([3,9,27,19]).

15

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of
Functional Programming 1(4), 375–416 (Oct 1991), https://www.cambridge.org/
core/article/explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125

2. Abadi, M., Fournet, C.: Access control based on execution history. In: NDSS (2003)
3. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization

theorem. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 659–670. POPL ’14, ACM, New York,
NY, USA (2014), http://doi.acm.org/10.1145/2535838.2535886

4. Amir-Mohammadian, S., Chong, S., Skalka, C.: Correct audit logging: Theory and
practice. In: POST. pp. 139–162 (2016)

5. Artemov, S.: The logic of justification. Review of Symbolic Logic 1(4), 477–513
(2008)

6. Artëmov, S.N.: Explicit provability and constructive semantics. Bulletin of Sym-
bolic Logic 7(1), 1–36 (2001)

7. Artëmov, S.N., Bonelli, E.: The intensional lambda calculus. In: Logical Founda-
tions of Computer Science. pp. 12–25 (2007)

8. Artemov, S.: Justification logic. In: Hölldobler, S., Lutz, C., Wansing, H.
(eds.) Logics in Artificial Intelligence: 11th European Conference, JELIA
2008, Dresden, Germany, September 28-October 1, 2008. Proceedings. pp. 1–4.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/10.

1007/978-3-540-87803-2_1

9. Asperti, A., Levy, J.J.: The cost of usage in the λ-calculus. In: Proceedings of
the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
pp. 293–300. LICS ’13, IEEE Computer Society, Washington, DC, USA (2013),
http://dx.doi.org/10.1109/LICS.2013.35

10. Banerjee, A., Naumann, D.A.: History-based access control and secure informa-
tion flow. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T. (eds.)
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices: Inter-
national Workshop, CASSIS 2004, Marseille, France, March 10-14, 2004, Revised
Selected Papers. pp. 27–48. Springer Berlin Heidelberg, Berlin, Heidelberg (2005),
http://dx.doi.org/10.1007/978-3-540-30569-9_2

11. Barendregt, H.P.: The Lambda Calculus : its Syntax and Semantics. Studies in
logic and the foundations of mathematics, North-Holland, Amsterdam, New-York,
Oxford (1981), http://opac.inria.fr/record=b1078721

12. Bavera, F., Bonelli, E.: Justification logic and audited computation. Journal of
Logic and Computation (2015), published online, June 19, 2015

13. de Bruijn, N.: Lambda-calculus notation with nameless dummies: a tool for auto-
matic formula manipulation with application to the Church-Rosser theorem. Inda-
gationes Mathematicae 34(5), 381–392 (1972)

14. Cousineau, G., Curien, P.L., Mauny, M.: The categorical abstract machine. Science
of Computer Programming 8(2), 173 – 202 (1987), http://www.sciencedirect.
com/science/article/pii/0167642387900207

15. Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: theory, implemen-
tation and applications. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21,
2011. pp. 151–162 (2011), http://doi.acm.org/10.1145/2046707.2046726

16. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination

16

https://www.cambridge.org/core/article/explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125
https://www.cambridge.org/core/article/explicit-substitutions/C1B1AFAE8F34C953C1B2DF3C2D4C2125
http://doi.acm.org/10.1145/2535838.2535886
http://dx.doi.org/10.1007/978-3-540-87803-2_1
http://dx.doi.org/10.1007/978-3-540-87803-2_1
http://dx.doi.org/10.1109/LICS.2013.35
http://dx.doi.org/10.1007/978-3-540-30569-9_2
http://opac.inria.fr/record=b1078721
http://www.sciencedirect.com/science/article/pii/0167642387900207
http://www.sciencedirect.com/science/article/pii/0167642387900207
http://doi.acm.org/10.1145/2046707.2046726

of programs automatically with AProVE. In: Demri, S., Kapur, D., Weidenbach,
C. (eds.) Automated Reasoning: 7th International Joint Conference, IJCAR 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
19-22, 2014. Proceedings, pp. 184–191. Springer International Publishing (2014),
http://dx.doi.org/10.1007/978-3-319-08587-6_13

17. Henderson, P.: Functional Programming: Application and Implementation.
Prentice-Hall, Englewood Cliffs, NJ (1980)

18. Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic, S.:
Aura: a programming language for authorization and audit. In: ICFP. pp. 27–38
(2008)

19. Kashima, R.: A proof of the standardization theorem in lambda-calculus. Tech.
Rep. Research Reports on Mathematical and Computing Science, Tokyo Institute
of Technology (2000)

20. Moreau, L.: The foundations for provenance on the web. Foundations and Trends
in Web Science 2(2–3) (2010)

21. Perera, R., Acar, U.A., Cheney, J., Levy, P.B.: Functional programs that explain
their work. In: ICFP. pp. 365–376. ACM (2012)

22. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical Structures in Computer Science 11(4), 511–540 (2001)

23. Ricciotti, W.: A core calculus for provenance inspection. In: Proceedings of the 19th
International Symposium on Principles and Practice of Declarative Programming.
pp. 187–198. PPDP ’17, ACM, New York, NY, USA (2017), http://doi.acm.org/
10.1145/3131851.3131871

24. Ricciotti, W., Cheney, J.: Strongly Normalizing Audited Computation. In:
Goranko, V., Dam, M. (eds.) 26th EACSL Annual Conference on Computer
Science Logic (CSL 2017). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 82, pp. 36:1–36:21. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2017), http://drops.dagstuhl.de/opus/volltexte/
2017/7681

25. Ricciotti, W., Stolarek, J., Perera, R., Cheney, J.: Imperative functional programs
that explain their work. Proc. ACM Program. Lang. 1(ICFP), 14:1–14:28 (Aug
2017), http://doi.acm.org/10.1145/3110258

26. Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In: CSF.
pp. 177–191 (2008)

27. Xi, H.: Upper bounds for standardizations and an application. J. Symbolic Logic
64(1), 291–303 (03 1999), http://projecteuclid.org/euclid.jsl/1183745706

17

http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://doi.acm.org/10.1145/3131851.3131871
http://doi.acm.org/10.1145/3131851.3131871
http://drops.dagstuhl.de/opus/volltexte/2017/7681
http://drops.dagstuhl.de/opus/volltexte/2017/7681
http://doi.acm.org/10.1145/3110258
http://projecteuclid.org/euclid.jsl/1183745706

A Proofs

In this appendix, we provide more detail about the proofs mentioned in Sec-
tion 4.2. We start by defining meta-level projections and focused forms, and
then we prove some theorems about them.

Definition 2. The meta-level projections TMU and VMW are defined as follows:

TMU =

{
M ′ if στ(M) = q . M ′

στ(M) else
VMW =

{
q if στ(M) = q . M ′

r else

Definition 3. The focused form of a term M , denoted by ‖M‖, is defined by:

‖M‖ = VMW . TMU

The focused form of a σ-normal substitution s =
−→
N · ↑p is defined by:

‖s‖ =
−−→
‖N‖ · ↑p

This definition is extended to all substitutions by taking ‖s‖ = ‖σ(s)‖.

Lemma 4. For all M and s, we have στ(M) = στ(‖M‖) and στ(s) = στ(‖s‖).

Lemma 5. For all M , bMc
στ
−−−−� TMU and dMe

στ
−−−−� VMW.

Proof. After unfolding the definitions, the proof is by induction on στ(M). ut

We also define a meta-level operation corresponding to explicit substitutions,
and prove the correspondence:

Definition 4. For σ-normal M and
−→
N = N1, . . . , Nk, the meta-level substitu-

tion M
{−→
N
}
p

is defined by recursion on σ-normal terms as follows:

m
{−→
N
}
p

= Nm n
{−→
N
}
p

= n+ p

(λ.M)
{−→
N
}
p

= λ.(M
{

1,
−−−−→
lift(N)

}
p+1

) (R S)
{−→
N
}
p

= R
{−→
N
}
p
S
{−→
N
}
p

let!(R,S)
{−→
N
}
p

= let!

(
R
{−→
N
}
p
, (!qM)

{−→
N
}
p

= !q(M
{−→
N
}
p
)

S
{

1,
−−−−→
lift(N)

}
p+1

)
ι({
−→
M})

{−→
N
}
p

= ι({
−−−−−−→
M
{−→
N
}
p
})

(q . M)
{−→
N
}
p

= q . (M
{−→
N
}
p
)

where m ≤ k < p and
−−−−→
lift(N) lifts by one all of the free indices in each Ni.

We will write M
{−→
N
}

as syntactic sugar for M
{−→
N
}

0
.

18

Lemma 6. For all M,
−→
N in στ -normal form, M [

−→
N · ↑p]

στ
−−−−� M

{−→
N
}
p
. In

particular, M [R]
στ
−−−−�M {R}.

Proof. Routine induction on σ-normal forms M . ut

We can use meta-substitution to define β-reduction for σ-normal terms in
the same style as in CAU−, and lift it to eager β̄-reduction acting on focused
terms:

(λ.M) N
β−−→ β . M {N} let!(!qM,N)

β−−→ β! . N {q . M}

!qF [ι(ϑ)]
β−−→ !qF [ti . qϑ]

M
β−−→ N

E [M]
β−−→ E [N]

M
β−−→ N

S[M]
β−−→ S[N]

M
β−−→ N

‖M‖ β̄−−→ ‖N‖

s
β−−→ t

‖s‖ β̄−−→ ‖t‖

The last two rules, defining β̄-reduction in terms of β-reduction, are not suf-
ficiently compositional for our proofs, but we can prove a version where the
premise is also a β̄-reduction:

Lemma 7. If M
β̄−−→ N , then ‖E [M]‖ β̄−−→ ‖E [N]‖ and ‖S[M]‖ β̄−−→ ‖S[N]‖.

Proof. From the hypothesis M
β̄−−→ N we obtain M ′, N ′ such that M = ‖M ′‖,

N = ‖N ′‖ and M ′
β−−→ N ′. We proceed by induction on this reduction: in the

congruence case we obtain a context E ′ that we need to merge with E to obtain
the thesis. The substitution case follows similarly. ut

Then we prove that β-reduction can be simulated in CAU−σ :

Lemma 8. If M
β−−→ N , then M

Beta−−−→
στ
−−−−� N

Proof. By induction on the hypothesis, using Lemma 6. ut

Proof of Theorem 2. If M
CAU−

−−−−−−� N , then M
CAU−σ−−−−−−� N .

M
CAU−−−−−−→ N implies M

β−−→ R
τ
−−−� τ(R) = N for some R; then M

CAU−σ−−−−−−−�
N is an immediate consequence of Lemma 8. ut

We are also interested in proving the dual statement: for every CAU−σ Beta-
reduction there should be a CAU− reduction on the corresponding στ -normal
forms. To prove this theorem, we need a suitable version of the usual substitu-
tivity property of β-reduction, which is proved in the standard way:

19

Lemma 9.

If M
β−−→M ′, then M

{−→
N
}
k

β−−→M ′
{−→
N
}
k
.

If Ni
β−−→ N ′i , then M {N1 · · ·Ni−1, Ni, Ni+1 · · ·Np}k

β
−−−�

M {N1 · · ·Ni−1, N
′
i , Ni+1 · · ·Np}k.

We can now prove that Beta-reductions can be mimicked by β̄-reductions on
the corresponding focused forms:

Lemma 10. If M
Beta−−−→ N then ‖M‖

β̄
−−−� ‖N‖.

If s
Beta−−−→ t then ‖s‖

β̄
−−−� ‖t‖.

Proof. By mutual induction on the derivations of M
Beta−−−−→ N and s

Beta−−−−→ t.
We consider two base cases, the applied explicit substitution case, and one of
the other inductive cases (reduction in the first subterm of an application); the
remaining cases can be proved similarly.

The first base case consists of lambda-application redexes:

(λM) N
Beta−−−−→ t(app(lam(dMe), dNe),β) . bMc [bNc]

We need to prove that:

‖(λM) N‖ β̄−−→ ‖t(app(lam(dMe), dNe),β)) . bMc [bNc]‖

By confluence of στ , we rewrite the left-hand side of the thesis with a στ -
equivalent focused term:

‖(λM) N)‖ = ‖app(lam(VMW),VNW) . (λTMU) TNU‖

Now we perform a
β̄−−→ step to obtain:

‖app(lam(VMW),VNW) . β . TMU {TNU}‖
= ‖t(app(lam(VMW),VNW),β) . TMU {TNU}‖

We prove that the rhs of the thesis equals the result of the β̄-reduction:

‖t(app(lam(dMe), dNe),β) . bMc [bNc]‖
= ‖t(app(lam(VMW),VNW),β) . TMU[TNU]‖
= ‖t(app(lam(VMW),VNW),β) . TMU {TNU}‖

The case of let-box redexes is similar. In CAU−σ , we have:

let!(!qM,N)
Beta−−−−→ t(let!(r, dNe),β!) . bNc [q . M]

We need to prove that:

‖let!(!qM,N)‖ β−−→ ‖t(let!(r, dNe),β!) . bNc [q . M]‖

20

We rewrite the lhs of the thesis:

‖let!(!qM,N)‖ = ‖let!(r,VNW) . let!(!qM,TNU)‖

then perform a β̄-step to obtain:

‖let!(r,VNW) . β! . TNU {q . M}‖
= ‖t(let!(r,VNW),β!) . TNU {q . M}‖
= ‖t(t(let!(r,VNW),β!),VTNU {q . M}W) . TTNU {q . M}U‖

We prove that the rhs of the thesis equals the result of the β̄-reduction:

‖t(let!(r, dNe),β!) . bNc [q . M]‖
= ‖t(let!(r,VNW),β!) . TNU[q . M])‖
= ‖t(let!(r,VNW),β!) . TNU {q . M}‖
= ‖t(t(let!(r,VNW),β!),VTNU {q . M}W) . TTNU {q . M}U‖

In the application case, we need to prove ‖M N‖ β̄−−→ ‖M ′ N‖ under the

induction hypothesis that ‖M‖ β̄−−→ ‖M ′‖. By Lemma 7 we prove

‖‖M‖ N‖ β̄−−→ ‖‖M ′‖ N‖

which equals the thesis by substitution for στ -equivalent subterms.
For applied explicit substitution, we have the following cases:

‖M‖
β̄
−−−� ‖M ′‖ =⇒ ‖M [s]‖

β̄
−−−� ‖M ′[s]‖

‖s‖
β̄
−−−� ‖s′‖ =⇒ ‖M [s]‖

β̄
−−−� ‖M [s′]‖

They are both consequences of Lemma 9. ut

In the following results, we write
CAU−−−−−−→ for the reduction relation in CAU−,

i.e. a
β−−→-step followed by τ -normalization, and

CAU−σ−−−−−→ for the full rewriting
system of CAU−σ .

Lemma 11. If M
β̄−−→ N then στ(M)

CAU−−−−−→ στ(N).

Proof. By the definition of β̄-reduction, we obtain M = ‖M ′‖ , N = ‖N ′‖ such

that M ′
β−−→ N ′, then we prove στ(‖M ′‖) = M ′ and στ(‖N ′‖) = τ(N ′). ut

Lemma 12. If M
Beta−−−→ N , then στ(M)

CAU−

−−−−−−� στ(N)

Proof. By Lemma 10 we get ‖M‖
β̄
−−−� ‖N‖. By Lemma 11 and Lemma 4, we

prove the thesis. ut

Lemma 13. If M
στ←−−→ N then στ(M) = στ(N)

We can finally give the proof of the main theorem.

21

Proof of Theorem 3. If M
CAU−σ−−−−−−� N , then στ(M)

CAU−

−−−−−−� στ(N).
We rewrite the hypothesis as

M
Beta
−−−−−−� στ←−−→

Beta
−−−−−−� στ←−−→ · · ·N

Then the proof is a diagram chase based on Lemma 12 and Lemma 13. ut

22

	Explicit Auditing

