
About the Formalization of Some Results by

Chebyshev in Number Theory

Andrea Asperti∗ and Wilmer Ricciotti

Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, Bologna
{asperti,ricciott}@cs.unibo.it

Abstract. We discuss the formalization, in the Matita Interactive The-
orem Prover, of a famous result by Chebyshev concerning the distribu-
tion of prime numbers, essentially subsuming, as a corollary, Bertrand’s
postulate. Even if Chebyshev’s result has been later superseded by the
stronger prime number theorem, his machinery, and in particular the two
functions ψ and θ still play a central role in the modern development of
number theory. Differently from other recent formalizations of other re-
sults in number theory, our proof is entirely arithmetical. It makes use of
most part of the machinery of elementary arithmetics, and in particular
of properties of prime numbers, factorization, products and summations,
providing a natural benchmark for assessing the actual development of
the arithmetical knowledge base.

1 Introduction

Let π(n) denote the number of primes not exceeding n. The prime number
theorem, proved by Hadamard and la Vallé Poussin in 1896 states that π(n) is
asymptotically equal to n/ log(n), that is the ratio between the two functions
tends to 1 when n tends to infinity. In this paper we address a weaker result,
due to Chebyshev around 1850, stating that the order of magnitude of π(n) is
n/ logn, meaning that we can find two constants c1 and c2 such that, for any n

c1
n

log(n)
≤ π(n) ≤ c2

n

logn

Even if Chebyshev’s theorem is sensibly simpler than the prime number theo-
rem, already formalized by Avigad et al. in Isabelle [3] and by Harrison in HOL
Light [5], it is far form trivial (in Hardy and Wright’s famous textbook [7], it
takes pages 340-344 of chapter 22). In particular, our point was to give a fully
arithmetical (and constructive) proof of this theorem. Even if Selberg’s proof of
the prime number theorem is “elementary”, meaning that it requires no sophisti-
cated tools of analysis except for the properties of logarithms, a fully arithmetical
proof of this results looks problematics, considering that the statement involves
in an essential way the Naperian logarithm. On the other side, the logarithm
∗ On leave at INRIA-Microsoft Research Center, Orsay, France.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 19–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 A. Asperti and W. Ricciotti

in Chebyshev’s theorem can be in any base, and can be also essentially avoided
(at least from the statement), asserting the existence of two constants c1 and c2
such that, for any n

2c1n ≤ nπ(n) ≤ 2c2n

that is what we actually proved.
As an important byproduct, we also give the first purely arithmetical formal

proof of Bertrand’s postulate, stating that for any n, there exists a prime number
between n and 2n1.

The paper aims at providing a discussion of the subject in a form suitable
to its formalization, without actually entering in implementation details (hence
avoiding a direct discussion of the Matita system, but for a few descriptive
examples).

2 Primes and the Factorial Function

In the rest of the paper, all functions are defined on natural numbers. In partic-
ular, n/m denotes the integer part of the division between n and m, and loga n
denotes the maximum i such ai ≤ n.

Chebyshev’s approach to the study of the distribution of prime numbers con-
sists in exploiting the decomposition of the number n! as a product of prime
numbers. The idea is that the numbers 1, 2, . . . , n include just n

p multiples of p,
n
p2 multiples of p2, an so on. Hence (the variable bound by the product is written
in bold)

n! =
∏

p≤n

∏

i<logp n

pn/pi+1
(1)

The previous one is a good example of a typical mathematical argumentation
(see e.g. [7], p. 342). Looking more carefully, you see that it provides you (almost)
no information, since it is essentially a mere rephrasing of the statement: it is a
gentle invitation to work it out by yourself, just a bit less unsympathetic than a
brutal “trivial”.

The formal proof requires a bit more work. The starting point is that every
integer n may be uniquely decomposed as the product of all its prime factors.
Le us write ordp(n) for the multiplicity of p in n; then

n =
∏

p≤n

pordp(n) =
∏

p≤n

∏

i < logp n

pi+1|n

p (2)

for p prime. At the time we started this work, the mathematical library of Matita
already contained the proof of the Fundamental Theorem of Arithmetic, namely
the existence and uniqueness of the decomposition in prime factors. This was
1 Providing a good upper bound to the search for the next prime, in systems based on

logics like the Calculus of Inductive Constructions, is essential to define a reasonably
efficient enumeration function for all primes.

About the Formalization of Some Results by Chebyshev in Number Theory 21

proved by giving a factorization function returning for each natural number n
a list of multiplicities of its prime factors (for a given factorization strategy), a
function computing the products of the elements in the list, and proving that
they are inverse of each other. However, passing from this result to the formu-
lation of equation 2 is not so evident. Since, on the other hand, all the needed
machinery was already in the library, we opted for a direct proof. The idea is
to work by induction on the upper bound of the product. However, we cannot
directly work on n, since this must be the constant argument of ordp(n). So have
to rephrase the statement in the form

∀m > c(n), n =
∏

p≤m

pordp(n)

Where c(n) is a suitable function of n. The naive idea to take c(n) = n does not
work: in fact, in order to ensure that the induction works properly, we must take
a minimum bound, that in this case is the largest prime factor of n. This is the
actual statement we proved:

theorem lt_max_to_pi_p_primeb:
\forall q,m.
O < m \to
max m (\lambda i.primeb i \land divides_b i m) < q \to
m = pi_p q (\lambda i.primeb i \land divides_b i m)

(\lambda p.exp p (ord m p)).

From the previous result we obtain equation 2 as a simple corollary. So,

n! =
∏

1≤m≤n

m

=
∏

1≤m≤n

∏

p≤m

∏

i < logp m

pi+1|m

p

=
∏

p≤n

∏

p≤m≤n

∏

i < logp m

pi+1|m

p

=
∏

p≤n

∏

i<logp n

∏

m ≤ n
pi+1|m

p

=
∏

p≤n

∏

i<logp n

pn/pi+1

In, particular, for 2n we have:

(2n)! =
∏

p≤2n

∏

i<logp 2n

p2n/pi+1
(3)

22 A. Asperti and W. Ricciotti

But
2n
pi+1

= 2
n

pi+1
+

(
2n
pi+1

mod 2
)

Moreover, if n ≤ p or logp n ≤ i we have

n

pi+1
= 0

Hence, if we define

B(n) =
∏

p≤n

∏

i<logp n

p(n/pi+1 mod 2)

equation (3) becomes
(2n)! = n!2B(2n) (4)

B(2n) is thus the binomial coefficient
(
2n
n

)
.

2.1 Upper and Lower Bounds for B

For all n, (2n)! ≤ 22n−1n!2. For technical reasons, we need however a slightly
stronger result, namely,

(2n)! ≤ 22n−2n!2

that holds for any n larger than 4. The proof is by induction.
The base case amounts to check that 10! ≤ 285!2, which can be proved by a

mere computation (after some simplification).
In the inductive case

(2 · (n+ 1))! = (2n+ 2)(2n+ 1)(2n)!
≤ (2n+ 2)(2n+ 1)22n−2n!2

≤ (2n+ 2)(2n+ 2)22n−2n!2

= 22n(n+ 1)!2

So, by equation (4), we conclude that, for any n

B(2n) ≤ 22n−1 (5)

and when n is larger than 4,

B(2n) ≤ 22n−2 (6)

Similarly, we prove that, for any n > 0,

22nn!2 ≤ 2n(2n)!

About the Formalization of Some Results by Chebyshev in Number Theory 23

The proof is by induction on n. For n = 1 both sides reduce to 4. For n > 1,

22n+2(n+ 1)!2 = 4(n+ 1)222nn!
= 4(n+ 1)22n(2n)!
= 4(n+ 1)(n+ 1)2n(2n)!
≤ 4(n+ 1)(n+ 1)(2n+ 1)(2n)!
= 2(n+ 1)(2n+ 2)(2n+ 1)(2n)!
= 2(n+ 1)(2n+ 2)!

By equation (4) we conclude that

22n ≤ 2nB(2n) (7)

and since for any n, 2n ≤ 2n,
2n ≤ B(2n) (8)

3 Chebyshev’s Ψ Function

Let us now consider the following function

Ψ(n) =
∏

p≤n

plogp n

where the product is over all primes less or equal to n. Chebyshev ψ function is
the naperian logarithm of Ψ , but as we mentioned in the introduction, we try
to avoid the use of logarithms as far as possible. The relation between Ψ and π
should be clear:

Ψ(n) =
∏

p≤n

plogp n ≤
∏

p≤n

n = nπ(n) (9)

Since moreover, n < aloga n+1 we also have n < a2 loga n, so that, easily,

nπ(n) ≤ Ψ(n)2 (10)

Let us now rewrite Ψ(n) in the following equivalent form:

Ψ ′(n) =
∏

p≤n

∏

i<logp n

p

It is then clear that, for any n,

B(n) ≤ Ψ ′(n) = Ψ(n)

Hence, the lower bound for B immediately gives a lower bound for Ψ , namely

2n ≤ 22n/2n ≤ Ψ(2n) (11)

24 A. Asperti and W. Ricciotti

For the upper bound, let us first observe that

Ψ(2n) = Ψ(n)
∏

p≤2n

∏

i<logp 2n

pj(n,p,i) (12)

where j(n, p, i) is 1 if n < pi+1 and 0 otherwise. Indeed

Ψ(2n) =
∏

p≤2n

∏

i<logp 2n

p

=

⎛

⎝
∏

p≤2n

∏

i<logp 2n

pj(n,p,i)

⎞

⎠

⎛

⎝
∏

p≤2n

∏

i<logp 2n

p1−j(n,p,i)

⎞

⎠

= Ψ(n)
∏

p≤2n

∏

i<logp 2n

pj(n,p,i)

Then observe that
∏

p≤2n

∏

i<logp 2n

pj(n,p,i) ≤ B(2n) =
∏

p≤2n

∏

i<logp 2n

p(2n/pi+1 mod 2) (13)

since if n < pi+1 then 2n/pi+1 mod 2 = 1. So we may conclude that

Ψ(2n) ≤ B(2n)Ψ(n) (14)

and in particular, for any n

Ψ(2n) ≤ 22n−1Ψ(n) (15)

and for 4 < n
Ψ(2n) ≤ 22n−2Ψ(n) (16)

We may now use inductively these estimates to prove

Ψ(n) ≤ 22n−3 (17)

For the proof, we need the monotonicity of Ψ , that is easily proved:

Ψ(n) =
∏

p≤n

plogp n ≤
∏

p≤n

plogp(n+1) ≤
∏

p≤n+1

plogp(n+1) = Ψ(n+ 1) (18)

Then we check that the property holds for any n ≤ 8, which can be done by
direct computation. If n is larger than 8 we distinguish two cases, according to n
is even or odd. We only consider the case n = 2m+1 that is the most interesting
one. Observe first that 8 < 2m+ 1 implies 4 < m. Then we have:

Ψ(n) = Ψ(2m+ 1)
≤ Ψ(2m+ 2)
≤ 22mΨ(m+ 1)
≤ 22m22(m+1)−3

≤ 22(2m+1)−3

In conclusion, we have

2n/2 ≤ Ψ(n) ≤ nπ(n) ≤ Ψ(n)2 ≤ 24n−6 ≤ 24n (19)

About the Formalization of Some Results by Chebyshev in Number Theory 25

4 Bertrand’s Postulate

Our approach to Chebyshev’s theorem, as most modern presentations of the
subject, essentially follows Chebyshev’s original idea, but in a rudimentary form
which provides a result that is numerically less precise, though of a similar
nature. In particular, Chebyshev was able to prove the asymptotic estimates

(c1 + o(1))
n

log n
≤ π(n) ≤ (c2 + o(1))

n

logn
(n→ ∞)

with

c1 = log(21/231/351/530−1/30) ≈ 0.92129
c2 = 6/5c1 ≈ 1.10555

In particular, since c2 < 2c1, this implies that

π(2n) > π(n)

for all large n. Actually, by direct computation, Chebyshev proved that the
inequality remains true for all n, confirming a famous conjecture known as
Bertrand’s postulate.

With our rough estimates, we could only prove the existence of a prime number
between n and 5n, for n sufficiently large. There exists however an alternative
approach to the proof of Bertrand’s postulate due to Erdös [4] (see also [7],
p. 344) that is well suited to a formal encoding in arithmetics2.
Let

k(n, p) =
∑

i<logp n

(n/pi+1 mod 2)

Then, B can also be written as

B(n) =
∏

p≤n

pk(n,p)

We now split this product in two parts B1 and B2, according to k(n, p) = 1 or
k(n, p) > 1. Suppose that Bertrand postulate is false, hence there is no prime
between n and 2n. Moreover, if 2n

3 < p ≤ n, then 2n/p = 2 and for i > 1 and
n ≥ 6 2n/pi = 0 since

2n ≤
(

2n
3

)2

≤ pi

2 Erdös’ argument was already exploited by Théry in his proof of Bertrand postulate
[11]; however he failed to provide a fully arithmetical proof, being forced to make use
of the (classical, axiomatic) library of Coq reals to solve the remaining inequalities.
Similarly, Riccardi’s formalization of Bertrand’s postulate in Mizar [8] makes an
essential use of real numbers.

26 A. Asperti and W. Ricciotti

so k(2n, p) = 0. Summing up, under the assumption that Bertrand postulate is
false,

B1(2n) =
∏

p ≤ 2n
k(2n, p) = 1

p

=
∏

p≤2n/3

p

≤ Ψ(2n/3)
≤ 22(2n/3)

On the other side, note that k(n, p) ≤ logp n, so if k(2n, p) ≥ 2 we also have
logp 2n ≥ 2 that implies p ≤ √

2n. So

B2(2n) =
∏

p ≤ 2n
2 ≤ k(2n, p)

pk(2n,p)

≤
∏

p≤√
2n

2n

= (2n)π(
√

2n)

For n ≥ 15, π(n) ≤ n/2 − 1. Hence, for any n ≥ 27 > 152, we have

B2(2n) ≤ (2n)
√

2n/2−1

Putting everything together, supposing Bertrand’s postulate is false, we would
have, for any n ≥ 27

22n ≤ 2nB(2n)
= 2nB1(2n)B2(2n)

≤ 22(2n/3)(2n)
√

2n/2

Observe that
22n = 22(2n/3)22n/3

so, by cancellation,
22n/3 ≤ (2n)

√
2n/2

and taking logarithms
2n
3

≤
√

2n
2

(log(2n) + 1)

We want to find, by arithmetical means, an integer m such that for all values
larger than m the previous equation is false; moreover, the integer m must be
sufficiently small to allow to check the remaining cases automatically in a feasible
time.

About the Formalization of Some Results by Chebyshev in Number Theory 27

We must prove √
2n
2

(log(2n) + 1) <
2n
3

The strict inequality is the first source of trouble, so we prove instead
√

2n
2

(log(2n) + 1) ≤ 2n
4

using the fact that
n

m+ 1
<

n

m

for any n ≥ m2 (in our case, n ≥ 8). By means of simple manipulations, it is
easy to transform the last equation in the following simpler form

2(log(2n) + 1) ≤
√

2n

or equivalently
2(logn+ 2)2 ≤ n

We now use the fact that for any a > 0 and any n ≥ 4a

2an2 ≤ 2n

to get, for any n ≥ 28

2(logn+ 2)2 ≤ 4(logn)2 = 22(logn)2 ≤ 2log n ≤ n

4.1 Automatic Check

To complete the proof, we have still to check that Bertrand’s postulate remains
true for all integers less then 28. This is very simple in principle: it is sufficient to

1. Generate the list of all primes up to the first prime larger than 28 (in reverse
order).

2. Check that for any pair pi, pi+1 of consecutive primes in such list, pi < 2pi+1.

Both the generation of the list and its check can be performed automatically.
All we have to do is to prove that our algorithm for generating primes is correct
and complete, and that the previous check is equivalent to Bertrand’s postulate,
on the given interval.

Since before this formalization, Matita has contained in its library the machin-
ery necessary to perform this check – particularly a function primeb capable of
deciding whether its argument is a prime number or not. primeb is implemented
in the trivial way: it computes the smallest factor of its argument n by repeat-
edly dividing it by any m ≤ n, and finally checks whether it equals n or not.
The proof of correctness is, of course, straightforward; however, this comes at
the cost of an inefficient algorithm, whose use is practical only for small values
of n.

28 A. Asperti and W. Ricciotti

As it is often the case, to get better performance we must resort to a different
algorithm, whose proof of correctness is less trivial. The sieve of Eratosthenes
came as a good candidate, since it directly computes the list of the first primes up
to a given number, which is precisely what we need. Furthermore, it has a simple
implementation and an elementary, though a bit involved, proof of correctness,
which is also interesting in itself as a small case of software verification. This is
the actual code of the sieve, written in the Matita language:

let rec sieve_aux l1 l2 t on t \def
match t with
[O => l1 (* this case is vacuous *)
| S t1 => match l2 with
[nil => l1
| cons n tl => sieve_aux (n::l1)

(filter nat tl (\lambda x.notb (divides_b n x))) t1]].

definition sieve : nat \to list nat \def
\lambda m.sieve_aux [] (list_n m) m.

The function sieve_aux takes in input a list of primes (initially empty), a list
of integers yet to sieve (initially comprising all natural numbers between 2 and a
given number m), and an integer that is supposed to be larger than the length of
the second list (initially m). This last parameter is used as recursive parameter
to ensure termination. The algorithm simply takes the first element of the second
list, adds it to the first list, and removes from the second list all its multiples.

Here is the function checking that each element of the list is less than twice
its successor (we also check that the last element is 2):

let rec check_list l \def
match l with
[nil \Rightarrow true
| cons (hd:nat) tl \Rightarrow
match tl with
[nil \Rightarrow eqb hd 2
| cons hd1 tl1 \Rightarrow
(leb (S hd1) hd \land leb hd (2*hd1) \land check_list tl)

]
].

In order for these procedures to be useful, some properties must hold. First we
need to prove correctness and completeness of sieve, which in turn requires us
to understand and prove the recursion invariant of sieve_aux. Informally:

Given a natural number m and two lists l1 and l2, such that
– for any natural number p, p is contained in l1 if and only if it is

prime and less than any number contained in l2
– for any natural number x, x is contained in l2 if and only if 2 ≤ x ≤ m

and x isn’t multiple of any number contained in l1

About the Formalization of Some Results by Chebyshev in Number Theory 29

then, assuming l1 and l2 are respectively sorted decreasingly and in-
creasingly, and t is less than the length of l2, sieve aux l1 l2 t is a
sorted list of decreasing numbers and p is contained in sieve aux l1 l2
t if and only if p is prime and less than m.

The invariant is relatively complex, due to the mutual dependency of the prop-
erties of the two lists l1 and l2. A proof may be obtained by induction on t
and then by cases on l2. In the interesting part, for t = t′ + 1 and l2 = h :: l,
the statement is obtained by means of the induction hypothesis. The following
lemmata are also needed:

1. p is contained in h :: l1 if and only if it is prime, less or equal than m, and
less than any number contained in l′

2. x is in l′ if and only if it is greater or equal than 2, less or equal than m,
and it is not divisible by any number contained in h :: l1

3. length l′ ≤ t′
4. h :: l1 is sorted decreasingly
5. l′ is sorted increasingly

where l′ is l from which any number divisible by h has been removed, preserving
the order, that is filter nat l (\lambda x.notb (divides b h x)).

The tricky lemmata are 1 and 2. For the first one, we proceed by cases:

– if p = h, p is contained in h :: l (that is l2), therefore it is less than m and it
isn’t divisible by any number in l1; since h :: l is sorted, h is also less than
any number contained in l (and, in particular, less than any number in l′);
this implies p is also a prime number. The opposite direction of the logical
equivalence is trivial.

– if p 	= h, the implication from left to right is trivial since, under this hypoth-
esis, if p is contained in h :: l1, it must be contained in l1: by the hypothesis
on l1, this implies the thesis. In the opposite direction, we must prove that
if p is prime, less than m and less than any number contained in l′, then p
is contained in l1. First, p < h, otherwise by the hypothesis on l and the
definition of l′ we could prove p is contained in l′, thus obtaining p < p,
which is absurd. Furthermore, for any x contained in h :: l, h ≤ x, because
h :: l is sorted increasingly by hypothesis. Thus we get, for all x in h :: l,
p < x, which implies by the hypothesis on l1 that p is contained in l1.

The second lemma is less complicated. In the left-to-right implication, the non-
trivial part is to see that, if x is contained in l′, then it isn’t a multiple of any
p contained in h :: l1. By cases, if p = h, the thesis follows by definition of l′; if
p is contained in l1, it is sufficient to apply the hypothesis on l1. The opposite
direction of the implication is obtained combining the hypotheses to show that
x must be in h :: l. Then, x must be different from h (otherwise, we could prove
that x doesn’t divide itself). Since x must be in l and h doesn’t divide x, x must
also be in l′.

Last, we prove that if checklist l = true, then for any number p contained
in l and greater than 2, there exists some number q contained in l, such that
q < p ≤ 2q. The proof is easy by induction.

30 A. Asperti and W. Ricciotti

Combining the correctness and completeness of the sieve and this last prop-
erty, we finally get that Bertrand’s postulate holds for all integers less than
28, just by checking that check_list (sieve (S (exp 2 8))) = true, a test
which only takes some seconds.

5 Conclusions

In this paper we presented the formalization, in the Matita interactive theorem
prover, of some results by Chebyshev about the distribution of prime numbers.
Even if Chebyshev’s main result has been later superseded by the stronger prime
number theorem, his machinery, and in particular the two functions ψ and θ still
play a central role in the modern development of number theory.

As also testified by our own development, Matita is a mature system that
already permits the formalization of proofs of not trivial complexity (see . for
another recent formalization effort). Although the Matita arithmetical library
was already well developed at the time we started the work (see [2]), several
integrations were required, concerning the following subjects:

– logarithms, square root (632 lines)
– inequalities involving integer division (339 lines)
– magnitude of functions (255 lines)
– decomposition of a number n as a product of its primes (250 lines)
– binomial coefficients (260 lines)
– properties of the factorial function (303 lines)
– integrations to the library for

∑
and

∏
(148 lines)

– operations over lists (224 lines)

Apart from these prerequisites, the proofs of Chebyshev’s theorem and
Bertrand’s conjecture take respectively 2073 and 2389 lines (of which 1863 just
devoted to the validity check of the conjecture for integers less then 28). A good
amount of work was also spent in the investigation of related fields (Abel sum-
mations, properties of the Θ function, upper and lower bounds for Euler’s e
constant) that at the end have not been used in the main proof, but still have
an interest in themselves. The following table summarizes the dimension of the
development, and the total effort in time:

prereq. chebys. Bertrand check other total
lines 2411 2073 743 526 1863 7616
hours 54 51 21 16 48 190

In Hardy’s book [7], the proof of Bertrand’s postulate takes 42 lines, while Cheby-
shev’s theorem takes precisely three pages (90 lines): this gives a de Bruijn factor
of 20-25, that is in line with other developments in related subjects (see [3,2]).
The most interesting datum is however the average time required to formalize
a line of mathematical text, that in our case is about 1.5 hours (in [2], on a
different arithmetical subject, we gave an estimation of 2 hours per line). The

About the Formalization of Some Results by Chebyshev in Number Theory 31

impressive cost of the formalization is the main obstacle towards a larger diffu-
sion of automatic provers in the mathematical community, and all the research
effort in the area of formalized reasoning is finally aimed to reduce this cost.
Computing this value on large formalizations is an important an effective way
to measure the state of the art and to testify its advancement.

References

1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Heidelberg
(1976)

2. Asperti, A., Armentano, C.: A Page In Number Theory. Journal of Formalized
Reasoning 1 (2008) (to appear)

3. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Transactions on Computational Logic 9(1) (2007) (to ap-
pear in the ACM Transactions on Computational Logic)

4. Erdös, P.: Beweis eines Satzes von Tschebyschef. Acta Scientifica Mathematica 5,
194–198 (1932)

5. Harrison, J.: Formalizing an analytic proof of the Prime Number Theorem (ex-
tended abstract). In: Participant’s proceedings of TTVSI Festschrift in honour of
Mike Gordon’s 60th birthday (2008)

6. Jameson, G.J.O.: The Prime Number Theorem. London Mathematical Society Stu-
dent Texts, vol. 53. Cambridge University Press, Cambridge (2003)

7. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford
University Press, Oxford (1938) (Fourth edition 1975)

8. Riccardi, M.: Pocklington’s Theorem and Bertrand’s Postulate. Formalized Math-
ematics 14(2), 47–52 (2006)

9. Sacerdoti Coen, C., Tassi, E.: A constructive and formal proof of Lebesgues Dom-
inated Convergence Theorem in the interactive theorem prover Matita. Journal of
Formalized Reasoning 1(1), 51–89 (2008)

10. Tenenbaum, G., Mendès France, M.: The Prime Numbers and Their Distribution.
Student Mathematical Library. American Mathematical Society (2000)

11. Théry, L.: Proving Pearl: Knuth’s Algorithm for Prime Numbers. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 304–318. Springer, Heidelberg
(2003)

	About the Formalization of Some Results by Chebyshev in Number Theory
	Introduction
	Primes and the Factorial Function
	Upper and Lower Bounds for B

	Chebyshev's Function
	Bertrand's Postulate
	Automatic Check

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

