
J Autom Reasoning
DOI 10.1007/s10817-011-9229-y

A Canonical Locally Named Representation of Binding

Randy Pollack · Masahiko Sato · Wilmer Ricciotti

Received: 2 May 2011 / Accepted: 4 May 2011
© Springer Science+Business Media B.V. 2011

Abstract This paper is about completely formal representation of languages with
binding. We have previously written about a representation following an approach
going back to Frege, based on first-order syntax using distinct syntactic classes
for locally bound variables vs. global or free variables (Sato and Pollack, J Symb
Comput 45:598–616, 2010). The present paper differs from our previous work by
being more abstract. Whereas we previously gave a particular concrete function
for canonically choosing the names of binders, here we characterize abstractly the
properties required of such a choice function to guarantee canonical representation,
and focus on the metatheory of the representation, proving that it is in substitution
preserving isomorphism with the nominal Isabelle representation of pure lambda
terms. This metatheory is formalized in Isabelle/HOL. The final section outlines
a formalization in Matita of a challenging language with multiple binding and
simultaneous substitution. The Isabelle and Matita proof files are available online.

Keywords Binding · Lambda calculus · Formal proof

Pollack is partially supported by the project CerCo which acknowledges the financial support of
the Future and Emerging Technologies (FET) programme within the Seventh Framework
Programme for Research of the European Commission, under FET-Open grant number:
243881.

R. Pollack (B)
LFCS, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
e-mail: rpollack@inf.ed.ac.uk

M. Sato
Graduate School of Informatics, Kyoto University, Kyoto, Japan
e-mail: masahiko@kuis.kyoto-u.ac.jp

W. Ricciotti
Department of Computer Science, University of Bologna, Bologna, Italy
e-mail: ricciott@cs.unibo.it

R. Pollack et al.

1 Introduction

This paper is about completely formal representation of languages with binding.
The desiderata for such a representation include that it be semantically satisfying,
convenient for use with machine proof checking programs and natural for humans
to read, write and reason about. There is a large body of prior work in this area, and
several widely used technical approaches, each with many variations. We do not try
to cover or catalogue that work here, but point to some papers that do include some
such discussion: [1, 2, 6, 11, 13, 14, 16, 26].

We have previously written [22, 23] about a representation following an approach
going back to Frege [7], Gentzen [9] and Prawitz [21]. This approach is based on
first-order syntax using distinct syntactic classes for locally bound variables (Frege
used German letters [28, page 25]) vs. global or free variables, also called parameters
(Frege used Latin letters). This approach was first formalised and used for significant
machine checked examples in [15], and independently in an interesting variation,
in [10]. For a modern presentation of the latter variation, see [2]. We call our
representation ‘locally named’ because the abstractors carry local variable names.
(The variation described in [2, 10] is called ‘locally nameless’ because its abstrac-
tors are nameless as in de Bruijn representation [6].) We call our representation
‘canonical’ because α -equivalence is syntactic identity, and we need never formally
define or discuss α -equivalence or α -conversion.

The representation described in our previous work [22, 23] improves on that
of [15] by being canonical, thus giving the good properties of locally nameless
representation without the hassle of adjusting indexes.1 The representation of the
present paper differs from [22, 23] by being more abstract. In [22, 23] we use a
particular set for local variables (the natural numbers), and a particular function
choosing the unique names for binders to attain canonical representation. In the
present paper we show the same approach can use any infinite decidable set of atoms
for local variables, and characterize abstractly the properties of a choice function for
binding names that guarantee canonical representation. This is explained in detail
in Section 3.

Given that there are many approaches to reasoning about binding in use, we
outline the advantages of our approach. It is a first-order representation in that
the collection of lambda terms is an inductively defined predicate (i.e. subset) of
a datatype. Thus it does not need a special logic (as, e.g. Twelf [17]), but can be
expressed directly in any logic supporting inductive definition of types (or sets)
and predicates; e.g. classical extensional Higher Order Logic (HOL) or constructive
intensional type theory. It is lightweight enough to prototype directly in Coq or
HOL without large scale special purpose tools. (Serious use of our representation
would be greatly improved by development of tools, but we have not done this.) The
representation is natural, with name-carrying binders that are, nevertheless, injective
constructors (unlike nominal Isabelle, where binders are not injective because of

1The representations in [2, 10] already avoid deBruijn lifting by using only locally closed terms.
However these representations still have messy arguments when reasoning under binders.

A Canonical Locally Named Representation of Binding

α -equivalence). Thus our representation is both canonical and enjoys a kind of direct
pattern matching/inductive reasoning. Finally, unlike Higher Order Abstract Syntax
approaches, the expressiveness of our representation is limited only by the proof-
theoretic strength of the meta language (Coq, Isabelle, . . .), not by any anomaly
of the approach itself. For example we believe (without having carried out the
experiment) that the calculus of constructions is easily formalized in our approach,
using, say, Coq as a meta language, and that its normalization is provable in this
formalization. See Section 5 for a different example, and some discussion of the
limits of our approach. Summing up, our representation is natural, lightweight and
expressive.

Outline of the Paper The underlying syntactic datatype of our representation
(called symbolic expressions) is presented, with its properties, in Section 2. Section 3
gives an inductively defined predicate on symbolic expressions intended to pick out
a subset canonically representing pure lambda terms. This predicate is parametrised
by a height function for selecting the names of binders; the major part of this section
discusses the properties such a height function must have. Section 4 shows that
the properties we have outlined are exactly what is required to prove that our
lambda term representation is isomorphic with the lambda term representation of
nominal Isabelle [26]. This section ends with the example of β -reduction on our
lambda terms. In Section 5 we outline our representation of the multivariate lambda
calculus [20], a system with multiple binding and simultaneous substitution. Section 6
concludes.

1.1 Formalisation

Everything in Sections 2, 3 and 4 has been formalized in nominal Isabelle [26] by the
first author. Our Isabelle theory files are available online.2 We use a nominal Isabelle
atom type, and take advantage of convenient automation tools provided by nominal
Isabelle. We show, in Isabelle, that our lambda terms are isomorphic (respecting
substitution) with lambda terms as usually represented in nominal Isabelle. Although
it is an informal issue whether our formal representation adequately captures the
lambda terms in your mind, the fact that two formal representations agree adds to
confidence about the faithfulness of both representations.

Section 5 outlines a formalization by the third author of multivariate lambda calcu-
lus [20] in the Matita proof system3 using our representation. Matita implements an
intensional constructive type theory very close to the logic of Coq. The multivariate
lambda calculus includes multiple binding and simultaneous substitution. The Matita
proof files for this example are available online.4

2http://homepages.inf.ed.ac.uk/-rpollack/-export/-PollackSatoRicciotti_IsabelleJAR.tgz
3http://matita.cs.unibo.it/
4http://homepages.inf.ed.ac.uk/rpollack/export/PollackSatoRicciotti_MatitaJAR.tgz

http://homepages.inf.ed.ac.uk/-rpollack/-export/-PollackSatoRicciotti_IsabelleJAR.tgz
http://matita.cs.unibo.it/
http://homepages.inf.ed.ac.uk/rpollack/export/PollackSatoRicciotti_MatitaJAR.tgz

R. Pollack et al.

2 Symbolic Expressions

We start with two distinct denumerably infinite sets of atoms: X for global (free)
variables (sometimes called parameters), and V for local (bound) variables. We
reserve ‘X’, ‘Y’, ‘Z ’ for global variables and ‘x’, ‘y’, ‘z’ for local variables. The
datatype of symbolic expressions, S , is defined by:

X : S x : S

M : S N : S

(M N) : S

M : S

[x]M : S

The expression ‘(M N)’ is said to be the pair of M and N . The expression ‘[x]M’
is said to be the abstraction by x of M ; ‘x’ is said to be the binder and ‘M’ to be
the body of this expression. We have the usual induction principles on S , namely
structural induction and well-founded induction on the size of an expression.

Informally, the body of an abstraction expression is the scope of the binder. The
body M of an expression [x]M may bind x again, as in [x][x]x . In this case we
informally consider that the occurrences of ‘x’ in the body are bound by the inner
binder. This definition of symbolic expressions reflects our idea that local variables
may get bound, but global variables can never get bound. Note, however, that there
is no actual binding explicit in this free construction.

In this paper we use pure lambda calculus as the running example, and we have
given the definition of symbolic expressions for representing pure lambda calculus.
However, in more complex languages (such as system F, having binders for term
variables and for type variables) each kind of binder will have its own two species of
variables.

Occurrences of Variables To each symbolic expression M we assign a set LV(M)

called the free local variables of M :

LV(X)
�= {}

LV(x)
�= {x}

LV((M N))
�= LV(M) ∪ LV(N)

LV([x]M)
�= LV(M) − {x}

We say that x occurs free in M if x ∈ LV(M) . Similarly, define a set GV(M) called
the global variables of M :

GV(X)
�= {X}

GV(x)
�= {}

GV((M N))
�= GV(M) ∪ GV(N)

GV([x]M)
�= GV(M)

In practice we are only interested in whether X occurs in M or not, and borrow
the nominal logic notation X � M to mean X /∈ GV(M) . Further, we extend this
notation to other classes of global variables (e.g. as needed to represent System F,
mentioned above) and homomorphically to composite structures that may occur
in applications, such as typing contexts. Nominal Isabelle supports this extended
notation with a typeclass of atom types.

A Canonical Locally Named Representation of Binding

Replacement of Variables We define an operation of replacement for global vari-
ables, called substitution, by structural recursion:

[P/X]Y �=
{

P if X = Y,

Y if X �= Y.

[P/X]x �= x

[P/X](M N)
�= ([P/X]M [P/X]N)

[P/X][x]M
�= [x][P/X]M

(1)

From the fourth clause notice that if P contains free occurrences of x , these
occurrences will be bound after the substitution (e.g. [x/X][x]X = [x]x). This
is not the intended behaviour of substitution; known ways to avoid this include
renaming x in [x]M or renaming x in P . The former is called α -renaming (e.g.
as in [5, 24]); the latter is called lifting (e.g. as in [6]). In Section 3 we will use a
third way in which we only consider a subset of S whose members contain no free
occurrences of local variables: there simply are no free occurrences of local variables
to get captured. This is the historical reason for using two distinct species of names
for local vs. global variables. See [2, 15, 16] for previous modern formalizations using
this approach. The operation [P/X]M will be the correct notion of substitution for
our canonical representation of lambda terms.

We also need a purely technical operation of replacement for local variables,
[P/y]M , which is used in our development but does not correspond to a natural
operation on lambda terms. It is defined by structural recursion:

[P/y]X
�= X

[P/y]x �=
{

P if x = y,

x if x �= y.

[P/y](M N)
�= ([P/y]M [P/y]N)

[P/y][x]M
�=

{
[x]M if x = y,

[x][P/y]M if x �= y.

(2)

If x = y in the fourth clause, we have [P/y][x]M = [x]M , which is natural since
LV([x]M) does not contain y in this case. If x �= y , then substitution commutes with
the abstraction operation, also natural. As above, this operation does not prevent
capture (e.g. [x/y][x]y = [x]x), but will be correct on the subset of S containing
no free local variables.

We can show the following useful lemmas by induction on the construction of M .

Lemma 1 (Permutation Lemma) Both forms of substitution are equivariant: if π is a
f inite permutation on X , then

π ·[P/Y]M = [π ·P/π ·Y]π ·M and π ·[P/y]M = [π ·P/y]π ·M .

Proof Induction on structure of M . ��

In the following, π will range over finite permutations on X . The importance of
permuting names in reasoning about binding is discussed in [15, 16]. The connection

R. Pollack et al.

with the general notion of equivariance of a group action is pointed out in [8, 18]. For
a more detailed and abstract discussion in the present context, see [23].

Finite permutations are compositions of pairwise swapping of atoms, which we
write as (X, Y)·M .

Lemma 2 (Substitution and Swapping) If Y � M then [Y/X]M = (X, Y)·M .

Lemma 3 (Substitution Lemma) If X �= Y and X � Q , then we have

[Q/Y][P/X]M = [[Q/Y]P/X][Q/Y]M.

Lemma 4 (Substitutions Cancel) If X � M then M = [x/X][X/x]M .

Lemma 5 (Substitutions Commute) If X �= Y and x /∈ LV(N) then

[Y/x][N/X]M = [N/X][Y/x]M.

Occurrences of Binders In order to achieve canonical representation of lambda
terms, we define one more technical function EX(M) : X × S → (V set) computing
the set of local names occurring in binding position between the root of M and
any occurrence of X in M . This is not needed by users of our representation, but
is needed for the metatheory we are presenting here. The definition (by structural
recursion) is straightforward.

EX(Y)
�= {}

EX(y)
�= {}

EX((M N))
�= EX(M) ∪ EX(N)

EX([x]M)
�=

{ {} if X � M: no paths to X in M
{x} ∪ EX(M) otherwise: x in every path

E is equivariant

π ·EX(M) = Eπ ·X(π ·M). (3)

The intuition behind the definition of E is suggested by the observation:

x ∈ EX(M) =⇒ M �= [X/x][x/X]M (4)

because the inner substitution captures x . More positively we have the following
crucial lemma.

Lemma 6 (Decomposition of Substitution)

1. [N/x]M = [N/X][X/x]M if X � M .
2. [N/X]M = [N/x][x/X]M if x /∈ LV(M) and x /∈ EX(M) .

Proof For both claims the proof is by structural induction on M . In (2.) , when
M = [y]M′ consider the subcases x = y and x �= y . ��

A Canonical Locally Named Representation of Binding

3 Lambda Terms

As mentioned above, the first step toward a good representation of lambda terms
based on symbolic expressions is to consider the subset of symbolic expressions
that contain no unbound local variables, so that the two replacement operations of
Section 2 are capture free. We have LV(−) with which to express this subset, but it is
convenient to define it inductively. In [15, 16] this predicate is called variable closed
(vclosed)

vclosed X
vclosed M vclosed N

vclosed (M N)
vclosed M

vclosed [x][x/X]M (+)

We trivially have vclosed M iff LV(M) = {} , but the inductive definition of vclosed
comes with an induction principle that is more useful than the structural induction
principle on S in that it has no case for free local variables. We also have that vclosed
is closed under substitution:

vclosed M ∧ vclosed N =⇒ vclosed [N/X]M (5)

as substitution cannot create unbound local variables. You might worry that
‘[x/X]M’ in the conclusion of rule (+) is not capture avoiding, but this is
unimportant.

The set of vclosed symbolic expressions can be used as a representation of
lambda terms, but it is not a canonical representation; e.g. the distinct vclosed ex-
pressions [x]x and [y]y should be considered equal as lambda terms. As a conse-
quence, for example, the Church–Rosser theorem for the usual β -reduction does not
hold concretely for vclosed symbolic expressions, but only “up to α -equivalence”
[19]. Our game here is to avoid the need to reason about, or even define,
α -equivalence, so vclosed is unsatisfactory. However [15, 16] show that much
dependent type theory can be carried out concretely over vclosed symbolic ex-
pressions. The idea is to use well-behaved relations. E.g. Tait–Martin-Löf parallel
reduction, defined on vclosed symbolic expressions, does have the Church–Rosser
theorem concretely, and this is the notion of reduction used in [15, 16]. This may
seem ad hoc, but can also be seen as a technical justification for the definition of
Tait–Martin-Löf parallel reduction.

3.1 A Subset of Symbolic Expressions

The failure of vclosed to give a canonical representation for lambda terms is be-
cause rule (+) above, viewed as a constructor of lambda terms, takes X and M and
constructs [x][x/X]M for any x . To make the representation canonical we must
choose x canonically in this construction. We use functions of type X × S → V ,
called height functions, to make this choice canonical. For height function F we
write FX(M) for the F -height of X in M . Inductively define a predicate on S ,
parameterised by an arbitrary height function F :

X : L F

M : L F N : L F
(M N) : L F

M : L F x = FX(M)

[x][x/X]M : L F
(∗)

R. Pollack et al.

Compare rule (∗) with rule (+) above. Now the question is: what properties must F
have for LF to be an adequate representation of lambda terms? It is straightforward
that M : L F =⇒ vclosed M , so M : L F =⇒ (LV(M) = {}) , and the replacement
operations of Section 2 are capture free on L . But it is not obvious that L is closed
under substitution:

M : L ∧ N : L =⇒ [N/X]M : L (6)

This is Theorem 1 in the concrete setting of [23], and follows from the properties of
height functions we discuss below.

Before proceeding we improve our notation. The whole presentation that follows
is implicitly parameterised by a height function F , so we drop the subscript ‘F’.
Noticing that the conclusion of rule (∗) is a common construction, we define a
function abs: X × S → S by

absX M
�= [

FX(M)
] [

FX(M)/X
]

M.

Rule (∗) can now be rewritten as

M : L

absX M : L
(∗∗)

The reader should keep in mind that absX M is analogous to the informal lambda
abstraction λx.m . For example, for any F we have X � absX M , just as “ x doesn’t
occur free in λx.m ” (in nominal language, x is not in the support of λx.m). Thus,
for example, [N/X]absX M = absX M . Also, while the concrete constructors of S ,
including [−]− , are injective (S is a datatype), abs is not necessarily so. For
example we will see that for well behaved F (i.e. equivariant), FX(X) = FY(Y)

(hence [FX(X)/X]X = [FY(Y)/Y]Y) so

absX X = [
FX(X)

] [
FX(X)/X

]
X = [

FY(Y)
] [

FY(Y)/Y
]

Y = absYY. (7)

even when X �= Y . Similarly, although the constructors of S are equivariant, we do
not know that abs is equivariant in general; that depends on properties of F .

Finally, we define the notion of instantiation, � : S × S → S :

([x]M)�N
�= [N/x]M.

Instantation will only be applied to abstractions in this paper, so its value on other
constructors is irrelevant. Informally, one might see instantiation as a way to “lift” the
improper operation of (2) to proper terms in L . Instantiation inherits equivariance
from Lemma 1. For well behaved F it will be provable that

[x]M : L ∧ N : L =⇒ ([x]M)�N : L . (8)

This is Theorem 2 in the more concrete setting of [23].

A Canonical Locally Named Representation of Binding

3.1.1 Good F

Here are three properties of F that together guarantee that L is an adequate
representation in the sense that there is a substitution preserving isomorphism
between L and the set of pure lambda terms represented in nominal Isabelle.

(XHE) FX(M) = Fπ ·X(π ·M) F equivariant,

(XHF) FX(M) /∈ EX(M) F fresh,

(XHP) X �=Y∧X � Q =⇒ FX(M)=FX([Q/Y]M) F preserved by substitution.

We call a height function, F , excellent if it satisfies these properties. In fact it is
sufficient for F to satify these properties relativized to L to give an adequate
representation (Theorem 1).

(HE) M : L =⇒ FX(M) = Fπ ·X(π ·M) F equivariant on L,

(HF) M : L =⇒ FX(M) /∈ EX(M) F fresh on L,

(HP) M : L ∧ Q : L =⇒ F preserved by substitution on L.

X �= Y ∧ X � Q =⇒ FX(M) = FX([Q/Y]M)

A height function satisfying (HE), (HP) and (HF) is called good. Clearly every
excellent height function is good. Since we are interested in the weakest restrictions
on F that guarantee an adequate representation, we focus on good F , although in
applications to reasoning about languages with binding, the relativization to L is
inessential.

In the next three paragraphs we discuss the goodness properties individu-
ally, showing as motivation that they give the informally expected equations for
“ α -conversion” and substitution under abs . In Section 3.1.2 we show that they are
together consistent and independent. Section 3.2 digresses from the main argument
to present some other aspects of height functions. Section 4 contains the main results
connecting height functions with canonical representation of lambda terms.

(HE) F is Equivariant on L Thus FX(X) = FY(Y) for any X and Y . Note that
FX(M) ∈ V is distinct from any global variable, so π ·FX(M) = FX(M) . It is trivial
from the definition of abs that F is equivariant iff abs is equivariant:

FX(M) = Fπ ·X(π ·M) ⇐⇒ π ·absX M = absπ ·X(π ·M). (9)

so in the presence of (HE) , abs is equivariant on L . Also, (HE) implies equivari-
ance of L itself:

(HE) =⇒ (∀π M. M : L ⇐⇒ π ·M : L)

(proof by well founded induction on the size of M).
To use our representation in practice it is essential to derive strengthened in-

duction principles for the relations of interest, as discussed in [15, 16, 25]. (HE)

is required to prove these principles, and in particular a strengthened induction
principle for L is derivable from (HE) using well founded induction on the size
of a symbolic expression, as discussed in [23].

R. Pollack et al.

(HF) F is Fresh Recall the definition of E from Section 2. (HF) says FX(M) does
not occur in binding position on any path from the root of M to any occurrence of
X in M , so using FX(M) as the local name to bind positions of X in M will not
inadvertently capture any occurrences of FX(M) in M .

Lemma 7 (Height Lemma) Assume FX(M) /∈ LV(M) . The following are equivalent:

FX(M) /∈ EX(M) (10)

∀N : L. [N/X]M = (absX M)�N (11)

∀Z . [Z/X]M = (absX M)�Z (12)

Proof Unfolding the definitions of abs and �, (10) =⇒ (11) by Lemma 6.
Equation (11) =⇒ (12) is trivial. Taking Z = X in (12), (10) follows by (4). ��

Lemma 8 Assume (HF) , M : L and let x = FX(M) . Then

(1) [N/X]M = [N/x][x/X]M.

(2) Suppose also N : L, x = FY(N) and [x/X]M = [x/Y]N. Then
M = [X/Y]N and X �= Y =⇒ Y � M.

Proof (1) is a special case of Lemma 6(2.), using (HF) . (2) follows from (1) . ��

Lemma 9 (abs and “ α -conversion”) Assume M : L and N : L . Let α be the
formula

α
�= (X = Y ∧ M = N) ∨ (X �= Y ∧ M = [X/Y]N ∧ X � N)

which informally expresses α -equivalence of ‘λX.M’ and ‘λY.N’ .

1. From (HE) we have:

α =⇒ absX M = absY N.

2. From (HF) we have:

absX M = absY N =⇒ α.

Thus, from properties (HE) and (HF) together we see that abs behaves like
informal λ -abstraction for α -conversion. We have informally argued above that
properties (HE) and (HF) are natural, or anyway required for our representation
to work adequately (the formal argument is set out in Section 4). What is interesting
about Lemma 9 is how the informal notion of α -equivalence factors through these
two properties.

(HP) F is Preserved by Substitution Using Lemma 3 it is easy to see that:

X �= Y ∧ X � Q =⇒
(FX(M) = FX([Q/Y]M) ⇐⇒ [Q/Y]absX M = absX [Q/Y]M). (13)

A Canonical Locally Named Representation of Binding

Thus (HP) shows that moving substitution under abs has the same equation as
moving substitution under informal λ -abstraction. Equations (7), (13) and Lemma 9,
exemplify how our representation constructs the intended behaviour of abstraction
out of simple structural and functional operations in standard logic.

From (HE) and (HP) we can prove (6) using a strengthened induction principle
(derived using (HE) as mentioned above) on premise M : L . From (6) and (HF)

(via Lemma 7) we can prove (8).

3.1.2 Consistency and Independence of the Goodness Properties

Before proceeding to show that, for good F , L is a faithful reresentation of lambda
terms, we show that the ‘good’ properties make sense.

Lemma 10 (Good F Exist) Interpret V by the natural numbers. The height function
H def ined by

HX(Y)
�=

{
1 if X = Y
0 if X �= Y

HX(x)
�= 0

HX((M N))
�= max(HX(M), HX(N))

HX([x]M)
�=

{
HX(M) if HX(M) = 0 or HX(M) > x
x + 1 otherwise

is excellent, hence also good.

This is the original height function defined by the second author in [22], and
machine checked by the first author as reported in [23].

Proof All three properties are proved by induction on the structure of M. The proof
of (XHF) uses a lemma

x ∈ EY(P) =⇒ HY(P) > x

also proved by structural induction on P. ��

Lemma 11 ((HE) , (HP) and (HF) are Independent)

1. (HE) ∧ (HF) �=⇒ (HP)

2. (HE) ∧ (HP) �=⇒ (HF)

3. (HF) ∧ (HP) �=⇒ (HE)

Proof Case (1.) is satisfied by the height function

F1XY
�= 0

F1X x
�= 0

F1X(M N)
�= F1X M + F1X N + 1

F1X[x]M
�= x + F1X M + 1.

R. Pollack et al.

To see that F1 doesn’t satisfy (HP) take X �= Y, M = (X Y) and Q = (Y Y).
To see that it does satisfy (HF) note that if x occurs bound in M then F1X M > x .
(HE) of F1 is proved by well-founded induction on the size of M .

Case (2.) is satisfied by the constant height function F2X M
�= 0 . To see that this

function doesn’t satisfy (HF) take M = [0]X.
Case (3.) is satisfied by height function

F3X M
�= if X �= X0 ∨ X0�M then HX(M) else F3′

X M .

where X0 is any distinguished global variable, and

F3′
XY

�= 0

F3′
X x

�= 0

F3′
X(M N)

�= F3′
X M + F3′

X N

F3′
X[x]M

�= if X�M then 0 else 1 + x + F3′
X M.

To see that this function is not equivariant, take X �= X0 , M= X , π =(X0, X) . ��

Remark 1 In light of the equivalence between (11) and (12), one might wonder if, in
the presence of (HF) , (HP) might be equivalently replaced by (HP0) :

(HP0) (M : L ∧ X �= Y ∧ X �= Z) =⇒ FX(M) = FX([Z/Y]M).

We can now see that this conjecture is false, because the example F1 above satisfies
(HP0) as well as (HF) and (HE) , but, as shown above, fails to satisfy (HP) . Further,
our proof of adequacy of the representation (Section 4) really seems to need the
strong property (HP) .

3.2 Free Choices in Good F

This subsection is an aside from the main argument. The specific height function H
from Lemma 10 has the property:

X � M ⇐⇒ HX(M) = 0

In general we have:

Lemma 12 For given F and X � M , (HE) says that FX(M) does not depend on X ;
(HP) says that FX(M) does not depend on M ; and (HE) ∧ (HP) says that FX(M)

does not depend on X or M .

(HE) =⇒ ∀(M : L). ∃!v. ∀X. (X � M) =⇒ FX(M) = v

(HP) =⇒ ∀X. ∃!v. ∀(M : L). (X � M) =⇒ FX(M) = v

(HE) ∧ (HP) =⇒ ∃!v. ∀X(M : L). (X � M) =⇒ FX(M) = v

Conversely, if F is excellent and X �= Y , we cannot prove that FX(X) �= FX(Y) .

A Canonical Locally Named Representation of Binding

Lemma 13 (Free Choice in Excellent Functions) If F is excellent, and v ∈ V then

F′
X(M)

�= if M = X then v else FX(M)

is excellent.

Thus there is no definition schema for all excellent height functions (or all good
height functions) parameterised by a single choice function. At least two independent
choices are involved in the definition of a height function; one choice for FX(X)

(Lemma 13) and an independent choice for FX(Y) where X �= Y (Lemma 12).

4 A Canonical Representation of Lambda Terms

As has been pointed out in [12] the claim that a formalization is an adequate
representation of some informal notion is not itself formalizable. For one thing, there
can be no formal connection between an informal thing and a formal thing. Also, the
notion of “adequate representation”, even of one formal thing by another formal
thing, depends on which properties are meant to be preserved. Here we will show
that if F is good then L is in substitution preserving isomorphism with the formal
nominal Isabelle representation of pure lambda terms. With this we can show, for
example, that β -reduction is preserved by this representation. In [26] there is a proof
that the nominal representation of pure lambda terms is isomorphic to the quotient
of raw lambda-term syntax up to α -conversion.

We use the set X (the set of global variables of symbolic expressions) for the
variables of the nominal representation, and let A, B, C range over nominal lambda
terms. To fix notation, we write the nominal datatype of lambda terms, nL , as if it is
generated by

X : nL

A : nL B : nL

(A B) : nL

A : nL

[X]A : nL

nL has HOL equality up to α -conversion; the reader who wants to know what this
means must consult [26].

Substitution of nominal lambda terms is defined [26] by

X[Y::=C] �= if X = Y then C else X

(A B)[Y::=C] �= (A[Y::=C] B[Y::=C])
([X]A)[Y::=C] �= if X�(Y, C) then [X](A[Y::=C])

This last conditional equation means that one must sometimes α -convert [X]A
away from bound name X to avoid capture. Compare this last equation with (13)
for bringing substitution under abs .

In analogy with � (Section 3.1) we also define a notion of instantiation for
nominal terms, � : nL × nL → nL .

([X]A)�B
�= A[X::=B]

Instantation will only be applied to abstractions in what follows.

R. Pollack et al.

Now we can define a relation !! : nL × S → bool that will become the represen-
tation function:

X !! X
A !! M B !! N

(A B) !! (M N)
A !! M

[X]A !! absX M (14)

In the last rule, absX M implicitly mentions a height function F . For any F we have
the following lemma, which we use without further mention.

Lemma 14 (Straightforward Properties of the Representation !!)

∃M. A !! M !! is total,
A !! M =⇒ M : L !! hits only well formed terms.

(RS) M : L =⇒ ∃A. A !! M !! is surjective,
A !! M =⇒ (X � A ⇐⇒ X � M) !! respects global names.

We want to think of !! as a function. Clearly !! is defined for every A : nL , but
a priori it is not obvious that !! is single valued because, in the third rule, the
abstraction constructor of nominal terms is not injective. For example, let X0 �= X1

be distinguished global names, and consider a height function

FX(M)
�= if X = X0 then 0 else 1 .

We have [X0]X0 =[X1]X1 (nominal terms), [X0]X0 !! [0]0 and [X1]X1 !!
[1]1, but [0]0 �= [1]1 (symbolic expressions).

To turn the relation !! into a function ! : nL → S we use the HOL definite
description operator, THE :

!A �= THE M. A !! M.

!A is some M : S such that A !! M if there is a unique such M . Otherwise !A is
a value about which we know nothing except its type. To show that this function
behaves as desired, we must know that !! is single valued:

(RSV) A !! M1 ∧ A !! M2 =⇒ M1 = M2.

This is proved from (HE) in Lemma 16 below.

Lemma 15 (Equations for Representation Function !) Assume (RSV) . Then
(!A) : L and

A !! M ⇐⇒ M = !A
!X = X

!(A B) = (!A !B)
![X]A = absX !A

Proof By the meaning of the definite description operator. ��

A Canonical Locally Named Representation of Binding

Note that assuming (RSV) , ! inherits the properties of Lemma 14 via Lemma 15.

Lemma 16 ((HE) , (RSV) and Equivariance of !)

(HE) ⇐⇒ ((RSV) ∧ π ·!A = !π ·A)

Proof For direction =⇒ , first prove !! is equivariant:

A !! M =⇒ π ·A !! π ·M (15)

by induction on A !! M , using (HE) in the abstraction case. Then (RSV) is proved
by induction on its first premise followed, in each resulting case, by inversion of
its second premise; the only non-trivial case is for abstraction, which uses (15) and
Lemma 9(1). Finally equivariance of ! follows easily from these two facts.

For direction ⇐= , assume M : L and let M = !A . We have:

π ·absX M = π ·absX !A
= π ·!([X]A) by Lemma 15

= !(π ·[X]A) by equivariance of !
= ![π ·X]π ·A by equivariance of nominal abstraction

= absπ ·X(!π ·A) by Lemma 15

= absπ ·X(π ·!A) by equivariance of !
= absπ ·X(π ·M).

giving (HE) by (9). ��

It is interesting to note that (HP) independently implies that !! is equivariant, but
we still seem to need (HE) (via Lemma 9(1)) to show (RSV) from that fact.

Let us name some more properties of ! that play a part in what follows:

(RI) !A=!B =⇒ A= B ! is injective,
(RRS) !(A[X::=B]) = [!B/X]!A ! respects substitution,
(RRI0) !(([X]A)�Y) = (absX !A)�Y ! respects instantiation by parameters.

These properties are well-formed, if meaningless, on their own, but in the presence
of (RSV) take on their intended meaning via Lemma 15.

4.1 Good F Give an Adequate Representation

Theorem 1 (Adequacy of representation) If F is a good height function then ! is an
adequate representation. In particular, ! is a bijection ((RS)5 and (RI)) that satisf ies
(RRS) and (RRI0) :

(HE) ∧ (HP) ∧ (HF) =⇒ (RSV) ∧ (RS) ∧ (RI) ∧ (RRS) ∧ (RRI0).

5Defined in Lemma 14.

R. Pollack et al.

Proof We have already shown (Lemma 16) that (HE) implies (RSV) . From this,
Lemma 14 shows ! is surjective. It remains to show (RI) , (RRS) and (RRI0) .

(RI) is proved by double induction on the structures of A and B , using
Lemma 8(2) (which depends on (HF)) and equivariance of ! (which depends
on (HE)).

(RRS) is proved by induction on the structure of A, using (RSV) , (HP) and a
strengthened induction principle over the structure of A. In the case where A is
some [Y]A′ , this strengthened induction principle assures (by α -conversion) that
Y � (X,B). See [2, 15, 16, 23, 25, 27] for discussion of such strengthened induction
principles.

(RRI0) Unfolding definitions, we must show

!(A[X::=Y]) = (absX !A)�Y

Using (HF) and Lemma 7 this follows from (RRS) , which we already know holds
from (RSV) and (HP) . ��

4.2 Good F are Required for Adequate Representation

We present a converse to Theorem 1.

Theorem 2 (RSV) ∧ (RRS) ∧ (RRI0) =⇒ (HE) ∧ (HP) ∧ (HF).

There are two weaknesses with the statement of this theorem. First, we really
seem to need assumption (RRI0) to prove it although it isn’t clear why (RRI0)

is part of the notion of adequacy. (One might think that (RRS) =⇒ (RRI0) but
we have not been able to prove that.) Second, although (RI) clearly is part of the
notion of adequacy, it is not required for this proof. (Thus, via Theorem 1, (RI) is
not independent of (RSV) , (RRS) and (RRI0) .) First we prove a lemma.

Lemma 17 Assume (RSV) and (RRS) , then ! is equivariant: π ·!A = !π ·A .

Proof Any function f : nL → L that preserves substitution is equivariant. To see
this note that every permutation π is a composition of name swaps, (X, Y) , so it
suffices to show that f preserves swaps:

(X, Y)· f A = f ((X, Y)·A).

Picking Z � (X, Y, A, M) , swapping can be expressed in terms of substitution:

(X, Y)·A = A[Y::=Z][X::=Y][Z ::=X]
(X, Y)·!A = [X/Z][Y/X][Z/Y]!A

Since f preserves substitutions, the lemma follows. ��

Proof (of theorem 2) From (RSV) we know that the function ! satisfies Lemma 15.
From Lemma 17 we know that ! is equivariant. (HE) follows from Lemma 16.

For (HP) , assuming (M, N) : L and X � (Y, N) we must show

FX(M) = FX([N/Y]M).

A Canonical Locally Named Representation of Binding

Let M = !A and N = !B ; hence also X � B (Lemma 14). Using (13), it suffices
to note:

[N/Y]absX M = [!B/Y]absX !A
= [!B/Y]![X]A using Lemma 15

= !(([X]A)[Y::=B]) using (RRS)

= !([X](A[Y::=B])) using X � (Y, B)

= absX([!B/Y]!A) using Lemma 15 and (RRS)

= absX([N/Y]M).

It is interesting to note that in the presence of (RSV) , (HP) ⇐⇒ (RRS) .
For (HF) , using Lemma 7 and assuming M : L (so LV(M) = {}), it suffices

to show

[Z/X]M = (absX M)�Z for some Z .

Letting M = !A we have

[Z/X]M = !(A[X::=Z]) using (RRS)

= !(([X]A)�Z)

= (!([X]A))�!Z using (RRI0)

= (absX M)�Z

as desired. ��

4.3 Example: β -Reduction

We can define β -reduction over L by the rules:

P : L N : L

((absX P) N) →β (absX P)�N
(β)

M1 →β M2 N : L

(M1 N) →β (M2 N)

M : L N1 →β N2

(M N1) →β (M N2)

M →β N

absX M →β absX N
(ξ)

Notice how the uses of notations abs and � in rules (ξ) and (β) abstract details.
For example, the expanded form of rule (ξ)

M →β N x = FX(M) y = FX(N)

[x][x/X]M →β [y][y/X]N
(ξ)

shows that the bound variables x and y need not be the same, as indeed careful
reading of nominal Isabelle notation for this rule [4], and even informal notation
show. However unlike nominal Isabelle, our underlying abstraction constructor of S

is injective.

R. Pollack et al.

For good F , this definition of →β is well behaved; e.g.

M →β N ⇐⇒ π ·M →β π ·N,

M →β N =⇒ M : L ∧ N : L,

M →β N ∧ X � M =⇒ X � N.

For good F , the representation w.r.t. nominal Isabelle lambda terms respects
β -reduction:

A →β B ⇐⇒ !A →β !B.

(See [4] for the definition of β -reduction on nominal Isabelle lambda terms.)

5 A Different Example: The Multivariate Lambda Calculus

In this section we outline a formalization of the multivariate lambda calculus of
Pottinger [20]: “[. . .] a single λ may bind an arbitrary finite sequence of variables.
This introduces terms of the form λx0 . . . xn−1.X which are not the result of per-
forming n univariate abstractions. For example, we have λxy.x �= λx.λy.x . Redexes
have the form (λx0 . . . xn−1.X)Y0 . . . Yn−1 , and such a redex contracts to the result
of simultaneously substituting Y0, . . . , Yn−1 for x0, . . . , xn−1 in X .” The reason
for independent interest in this system is that, because reduction waits for enough
arguments, it gives a better notion of combinator than ordinary lambda calculus. For
our purposes, formalization of multiple binding and simultaneous substitution are
the interesting aspects.

As in previous sections we use V for the set of local (bindable) variables (ranged
over by x , y , . . .), and X for the set of global names (ranged over by X , Y , . . .).
Let Xs be the set of lists of atoms (ranged over by Xs , Ys , . . .)

We distinguish between symbolic expressions for value terms, VS (ranged over by
A , B , . . .) and, mutually defined, symbolic expressions for general terms S , (ranged
over by M , N , . . .). Let Ss be the set of lists of symbolic expressions (ranged over
by Ms , Ns , . . .). Finally, let m , n , . . . range over natural numbers that will be used
as indexes into lists. We use the notation Xsn and Msn for the nth element of the
indicated list.

The syntax of S and is given by the mutual definition:

X : VS (x, n) : VS

M : S

[x, n]M : VS

A : VS Ns : Ss
(A Ns) : S

Notice that application to a null list makes a value expression into an expression:
(A []) : S . The value expression [x, n]M results from abstracting a list of n global
names from expression M . The local variable (x, n) refers to the nth member of the
list abstracted by x . We will make this precise.

Define the local variables and global variables of an expression LV(M) and
GV(M) in the obvious way. We write Xs � M to mean that no member of Xs occurs
in GV(M) .

A Canonical Locally Named Representation of Binding

Replacement of Variables Simultaneous substitutions are concretely represented
as association lists, i.e. lists of X × S pairs. The variable σ ranges over substitu-
tions. We assume the standard lookup operation on association lists, saying that
(X, M) ∈ σ when (X, M) is the first pair in σ whose first component is X , and
X /∈ dom(σ) if no such pair exists. We will also sometimes write a substitution by
giving its typical element: [Mi/Xi] .

The action of a substitution is defined by:

[σ]Y �=
{

M if (Y, M) ∈ σ ,

Y if Y /∈ dom(σ).

[σ](x, n)
�= (x, n)

[σ]([x, n]M)
�= [x, n]([σ]M)

[σ](A Ns)
�= ([σ]A ([σ]Ns))

Replacement of local variables is defined by:

[Ms/y]X
�= X

[Ms/y](x, n)
�=

{
Msn if x = y,

(x, n) if x �= y.

[Ms/y](A Ns)
�= ([Ms/y]A [Ms/y]Ns)

[Ms/y][x, n]M
�=

{
[x, n]M if x = y,

[x, n][Ms/y]M if x �= y.

By writing Msn in the second case above, we are being loose about ‘arities’, but the
definition will only be used in correct cases.

5.1 Well Formed Multivariate Lambda Terms

The type of height functions is Xs × S → V . Suppose Xs = [X0, . . . , Xn−1] , and let
f : V abbreviate FXs(M) for some height function F . Suppose a symbolic expression
M = . . . Xi . . . X j . . . contains some of the Xi . We want abstraction to behave as
follows:

absXs M = [f, n] . . . (f, i) . . . (f, j)

Notice that the abstraction carries the length of the vector of abstracted global
names, and each occurrence of an abstracted global name in the body is replaced
by the (single) local name chosen by FXs(M) to be the binding name, along with
the appropriate index into the vector of abstracted global names. One complication
arises: if there are duplicates in Xs we intend the innermost occurrence (biggest
index) to bind. Thus, given that we use the first matching item in a substitution, we
should reverse the substitution. Taking

σ = [(f, i)/Xi]i=(n−1)...0

we define abstraction by:

absXs M
�= [f, lngth(Xs)][σ]M.

Abstraction of a vector of global names is truly an atomic operation, rather than
an iteration of unitary abstractions, as is described, for example, in [3]. It is worth

R. Pollack et al.

mentioning that this approach to atomically abstracting a vector of names appears
in [2] and the details were worked out in that setting by Arthur Charguéraud.

Now we can define the well formed multivariate lambda terms L , and well
formed multivariate lambda values VL , as mutually inductive properties of symbolic
expressions:

X : VL F

M : L F
absXs M : VL F

A : VL F ∀N ∈ Ns. N : L F
(A Ns) : L F

As before, we drop the explicit parameterization of LF by F . We want to prove the
analogue, in this setting, of (6), Lemma 19 below. As before, we consider properties
of height functions.

5.2 Well Behaved Height Functions

First, lift the definition of E to the current setting:

EXs(Y)
�= {}

EXs(y)
�= {}

EXs((A Ns))
�= EXs(A) ∪

(⋃
N∈Ns

EXs(N)

)

EXs([x, n]M)
�=

{ {} if Xs � M: no paths to any X in M
{x} ∪ EXs(M) otherwise: x in every path

The three properties of an excellent height function.

(XHE) FXs(M) = Fπ ·Xs(π ·M) F equivariant,
(XHF) FXs(M) /∈ EXs(M) F fresh,
(XHP) Xs � σ =⇒ FXs(M) = FXs([σ]M) F preserved by substitution.

Lemma 18 There exists an excellent height function.

Proof We adapt the excellent height function from Section 3.1.2:

HXs(Y)
�=

{
1 if Y ∈ Xs
0 if Y /∈ Xs

HXs((x, n))
�= 0

HXs((A Ns))
�= max

{
HXs(A), HXs(Ns)

}

HXs([x, n]M)
�=

{
HXs(M) if HXs(M) = 0 or HXs(M) > x
x + 1 otherwise

HXs(Ns)
�= max

{
HXs(N) | N ∈ Ns

}

Lemma 19 Assume F has (XHE) and (XHP) . Then substitution is well behaved on
well formed terms:

M : L ∧ (∀(X, N) ∈ σ. N : L) =⇒ [σ]M : L .

A Canonical Locally Named Representation of Binding

Fig. 1 Congruence rules for multivariate β -reduction

Proof By (strengthened) induction on M : L . ��

We define the notion of instantiation, � : S × Ss → S :

([x, n]M)�Ns
�= [Ns/x]M.

This is only used when lngth(Ns) = n .

Lemma 20 For excellent F , and lngth(Xs) = lngth(Ns) , we have

M : L ∧ (∀N ∈ Ns. N : L) =⇒ (absXs M)�Ns : L .

5.3 β -Reduction

There is still one remaining complication. Applications of an abstraction to a vector
of terms that is too short do not contract. But applications to a vector of terms that
is too long do contract, with some arguments left over. This shows up in rule (β) ,
where ‘ @ ’ is list concatenation and lngth is the length function on lists.6

M : L

∀N ∈ Ns. N : L

Ns = Nsa@Nsb

lngth(Xs) = lngth(Nsa) (absXs M)�Nsa = (A Qs)

((absXs M) Ns) →β (A (Qs@Nsb))
(β)

We have to explain the meta-typing of rule (β) . Instantiating the abstraction
absXs M with the right number of arguments gives (absXs M)�Nsa , a symbolic
expression, not a symbolic value. So it has shape (A Qs) (for some A and Qs , with
Qs possibly null). Then the contractum in rule (β) is (A (Qs@Nsb)) , carrying
along the leftover arguments. The congruence rules (Fig. 1) use an auxiliary judge-
ment Ns →β Ns′ saying that exactly one expression in a list of expressions reduces
(‘ :: ’ is list cons).

Lemma 21 Assume F is excellent. β reduction is well behaved:

M →β N ⇐⇒ π ·M →β π ·N,

M →β N =⇒ M : L ∧ N : L,

M →β N ∧ X � M =⇒ X � N.

6To be completely precise, ‘Xs’ doesn’t actually occur in ‘absXs M’ , so the occurrence of ‘lngth(Xs)’
in the premises of rule (β) is abuse of notation. However absXs M does carry lngth(Xs) in its official
syntax as defined above, so the rule can be made formal.

R. Pollack et al.

6 Conclusion

In [23] we presented a concrete canonical approach to name-carrying representation
for binding. We also showed some simple applications of our approach to beta
reduction and simple type assingnment. In the present paper we address exactly what
is needed of an abstract canonical choice of binding names (F) to make this approach
work.

We give three properties of a good height function F that guarantee F gives
an adequate representation of pure lambda terms, defined as a substitution and
instantiation preserving isomorphism with nominal lambda terms. Unfortunately the
need to use (RRI0) in this proof does not seem intuitively natural.

Should the user interested in actually reasoning about some language with binding
be interested in this paper? Not very much. Such a user could just use the concrete
height function H of Lemma 10. An advantage of doing this is that one can actually
compute with H , and do case analysis in proofs about H . But the disadvantage is
that one is tempted to always do such case analysis when more general principles
are simpler to reason about. Thus we recommend that a user take the abstract ap-
proach with an unspecified height function F satisfying the ‘excellent’ properties of
Section 3.1.1. In this way one avoids petty and unnecessary reasoning about rela-
tivisation of the ‘good’ properties to LF without committing to concrete reasoning
about a particular height function. Our formalization of the multivariate lambda
calculus in Section 5 takes this approach, and shows that our approach applies to
systems with considerably more challenging syntax than pure lambda calculus.

References

1. Ambler, S.J., Crole, R.L., Momigliano, A.: A definitional approach to primitive recursion over
higher order abstract syntax. In: MERLIN ’03: Proceedings of the 2003 Workshop on Mecha-
nized Reasoning About Languages with Variable Binding, pp. 1–11. ACM Press (2003)

2. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal
metatheory. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles on Programming Languages, pp. 3–15. ACM Press (2008)

3. Bengtson, J., Parrow, J.: Psi-calculi in isabelle. In: TPHOLs. LNCS, vol. 5674 (2009)
4. Berghofer, S., Urban, C.: Nominal inversion principles. In: Theorem Proving in Higher Order

Logics, TPHOLs 2008. LNCS. Springer-Verlag (2008)
5. Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North Holland (1958)
6. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church-Rosser theorem. Indag. Math., 34(5), 381–392
(1972)

7. Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens. Halle (1879) (Translated in van Heijenoort, J.: From Frege to Gödel: a source book in
mathematical logic, 1879–1931, pp. 1-82. Harvard University Press, Cambridge, MA (1967))

8. Gabbay, M., Pitts, A.: A new approach to abstract syntax involving binders. In: Longo, G. (ed.)
Proceedings of the 14th Annual Symposium on Logic in Computer Science (LICS’99), pp. 214–
224 (1999)

9. Gentzen, G.: Untersuchungen über das logische schliessen. Math. Zeitschrift 39, 176–210 (1934)
(English translation in Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North
Holland (1969))

10. Gordon, A.: A mechanism of name-carrying syntax up to alpha-conversion. In: Higher
Order Logic Theorem Proving and its Applications. Proceedings, 1993. LNCS 780, pp. 414–426.
Springer-Verlag (1993)

A Canonical Locally Named Representation of Binding

11. Gordon, A., Melham, T.: Five axioms of alpha conversion. In: Von Wright, J., Grundy, J.,
Harrison, J. (eds.) Ninth Conference on Theorem Proving in Higher Order Logics TPHOL’96,
Turku. LNCS, vol. 1125, pp. 173–190. Springer-Verlag (1996)

12. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1), 143–184
(1993) (Preliminary version in LICS’87)

13. Harper, R., Licata, D.R.: Mechanizing metatheory in a logical framework. J. Funct. Program.
17(4–5) (2007)

14. Honsell, F., Miculan, M., Scagnetto, I.: The theory of contexts for first order and higher order
abstract syntax. Electronic Notes Theor. Comp. Sci. 62, 116–135 (2002)

15. McKinna, J., Pollack, R.: Pure type systems formalized. In: Bezem, M., Groote, J.F. (eds.)
Proceedings of the International Conference on Typed Lambda Calculi and Applications,
TLCA’93, Utrecht. LNCS, number 664, pp. 289–305. Springer-Verlag (1993)

16. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. J. Autom. Reason.
23(3–4), 373–409 (1999)

17. Pfenning, F., Schürmann, C.: System description: twelf: a meta-logical framework for deduc-
tive systems. In: Proceedings of the 16th International Conference on Automated Deduction
(CADE-16). LNAI, Springer-Verlag (1999)

18. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186, 165–193
(2003)

19. Pollack, R.: The theory of LEGO: a proof checker for the extended calculus of constructions.
Ph.D. thesis, Univ. of Edinburgh (1994)

20. Pottinger, G.: A tour of the multivariate lambda calculus. In: Dunn, J.M., Gupta, A. (eds.) Truth
or Consequences: Essays in Honor of Nuel Belnap. Kluwer (1990)

21. Prawitz, D.: Natural Deduction: Proof Theoretical Study. Almquist and Wiksell, Stockholm
(1965)

22. Sato, M.: External and internal syntax of the λ -calculus. In: Buchberger, B., Ida, T., Kutsia, T.
(eds.) Proc. of the Austrian-Japanese Workshop on Symbolic Computation in Software Science,
SCSS 2008. RISC-Linz Report Series, number 08–08, pp. 176–195 (2008)

23. Sato, M., Pollack, R.: External and internal syntax of the λ -calculus. J. Symb. Comput. 45,
598–616 (2010)

24. Stoughton, A.: Substitution revisited. Theor. Comp. Sci. 17, 317–325 (1988)
25. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule inductions.

In: Automated Deduction—CADE-21. LNCS, number 4603, pp. 35–50. Springer-Verlag (2007)
26. Urban, C.: Nominal techniques in isabelle/hol. J. Autom. Reason. 40(4), 327–356 (2008)
27. Urban, C., Pollack, R.: Strong induction principles in the locally nameless representation of

binders (preliminary notes). Presented at (ACM) Workshop on Mechanizing Metatheory (2007)
28. van Heijenoort, J.: From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931.

Harvard University Press, Cambridge, MA (1967)

	A Canonical Locally Named Representation of Binding
	Abstract
	Introduction
	Formalisation

	Symbolic Expressions
	Lambda Terms
	A Subset of Symbolic Expressions
	Good F
	Consistency and Independence of the Goodness Properties

	Free Choices in Good F

	A Canonical Representation of Lambda Terms
	Good F Give an Adequate Representation
	Good F are Required for Adequate Representation
	Example: -Reduction

	A Different Example: The Multivariate Lambda Calculus
	Well Formed Multivariate Lambda Terms
	Well Behaved Height Functions
	-Reduction

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

